blob: 57c1a792d6f67a48e19d1b41dbabac2dd5a4c945 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Abstract interface for objects solving linear systems of various
// kinds.
#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
#define CERES_INTERNAL_LINEAR_SOLVER_H_
#include <cstddef>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "ceres/block_sparse_matrix.h"
#include "ceres/casts.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/context_impl.h"
#include "ceres/dense_sparse_matrix.h"
#include "ceres/execution_summary.h"
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres::internal {
enum class LinearSolverTerminationType {
// Termination criterion was met.
SUCCESS,
// Solver ran for max_num_iterations and terminated before the
// termination tolerance could be satisfied.
NO_CONVERGENCE,
// Solver was terminated due to numerical problems, generally due to
// the linear system being poorly conditioned.
FAILURE,
// Solver failed with a fatal error that cannot be recovered from,
// e.g. CHOLMOD ran out of memory when computing the symbolic or
// numeric factorization or an underlying library was called with
// the wrong arguments.
FATAL_ERROR
};
inline std::ostream& operator<<(std::ostream& s,
LinearSolverTerminationType type) {
switch (type) {
case LinearSolverTerminationType::SUCCESS:
s << "LINEAR_SOLVER_SUCCESS";
break;
case LinearSolverTerminationType::NO_CONVERGENCE:
s << "LINEAR_SOLVER_NO_CONVERGENCE";
break;
case LinearSolverTerminationType::FAILURE:
s << "LINEAR_SOLVER_FAILURE";
break;
case LinearSolverTerminationType::FATAL_ERROR:
s << "LINEAR_SOLVER_FATAL_ERROR";
break;
default:
s << "UNKNOWN LinearSolverTerminationType";
}
return s;
}
// This enum controls the fill-reducing ordering a sparse linear
// algebra library should use before computing a sparse factorization
// (usually Cholesky).
//
// TODO(sameeragarwal): Add support for nested dissection
enum class OrderingType {
NATURAL, // Do not re-order the matrix. This is useful when the
// matrix has been ordered using a fill-reducing ordering
// already.
AMD, // Use the Approximate Minimum Degree algorithm to re-order
// the matrix.
};
class LinearOperator;
// Abstract base class for objects that implement algorithms for
// solving linear systems
//
// Ax = b
//
// It is expected that a single instance of a LinearSolver object
// maybe used multiple times for solving multiple linear systems with
// the same sparsity structure. This allows them to cache and reuse
// information across solves. This means that calling Solve on the
// same LinearSolver instance with two different linear systems will
// result in undefined behaviour.
//
// Subclasses of LinearSolver use two structs to configure themselves.
// The Options struct configures the LinearSolver object for its
// lifetime. The PerSolveOptions struct is used to specify options for
// a particular Solve call.
class CERES_NO_EXPORT LinearSolver {
public:
struct Options {
LinearSolverType type = SPARSE_NORMAL_CHOLESKY;
PreconditionerType preconditioner_type = JACOBI;
VisibilityClusteringType visibility_clustering_type = CANONICAL_VIEWS;
DenseLinearAlgebraLibraryType dense_linear_algebra_library_type = EIGEN;
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type =
SUITE_SPARSE;
// See solver.h for information about these flags.
bool use_postordering = false;
bool dynamic_sparsity = false;
bool use_explicit_schur_complement = false;
// Number of internal iterations that the solver uses. This
// parameter only makes sense for iterative solvers like CG.
int min_num_iterations = 1;
int max_num_iterations = 1;
// If possible, how many threads can the solver use.
int num_threads = 1;
// Hints about the order in which the parameter blocks should be
// eliminated by the linear solver.
//
// For example if elimination_groups is a vector of size k, then
// the linear solver is informed that it should eliminate the
// parameter blocks 0 ... elimination_groups[0] - 1 first, and
// then elimination_groups[0] ... elimination_groups[1] - 1 and so
// on. Within each elimination group, the linear solver is free to
// choose how the parameter blocks are ordered. Different linear
// solvers have differing requirements on elimination_groups.
//
// The most common use is for Schur type solvers, where there
// should be at least two elimination groups and the first
// elimination group must form an independent set in the normal
// equations. The first elimination group corresponds to the
// num_eliminate_blocks in the Schur type solvers.
std::vector<int> elimination_groups;
// Iterative solvers, e.g. Preconditioned Conjugate Gradients
// maintain a cheap estimate of the residual which may become
// inaccurate over time. Thus for non-zero values of this
// parameter, the solver can be told to recalculate the value of
// the residual using a |b - Ax| evaluation.
int residual_reset_period = 10;
// If the block sizes in a BlockSparseMatrix are fixed, then in
// some cases the Schur complement based solvers can detect and
// specialize on them.
//
// It is expected that these parameters are set programmatically
// rather than manually.
//
// Please see schur_complement_solver.h and schur_eliminator.h for
// more details.
int row_block_size = Eigen::Dynamic;
int e_block_size = Eigen::Dynamic;
int f_block_size = Eigen::Dynamic;
bool use_mixed_precision_solves = false;
int max_num_refinement_iterations = 0;
int subset_preconditioner_start_row_block = -1;
ContextImpl* context = nullptr;
};
// Options for the Solve method.
struct PerSolveOptions {
// This option only makes sense for unsymmetric linear solvers
// that can solve rectangular linear systems.
//
// Given a matrix A, an optional diagonal matrix D as a vector,
// and a vector b, the linear solver will solve for
//
// | A | x = | b |
// | D | | 0 |
//
// If D is null, then it is treated as zero, and the solver returns
// the solution to
//
// A x = b
//
// In either case, x is the vector that solves the following
// optimization problem.
//
// arg min_x ||Ax - b||^2 + ||Dx||^2
//
// Here A is a matrix of size m x n, with full column rank. If A
// does not have full column rank, the results returned by the
// solver cannot be relied on. D, if it is not null is an array of
// size n. b is an array of size m and x is an array of size n.
double* D = nullptr;
// This option only makes sense for iterative solvers.
//
// In general the performance of an iterative linear solver
// depends on the condition number of the matrix A. For example
// the convergence rate of the conjugate gradients algorithm
// is proportional to the square root of the condition number.
//
// One particularly useful technique for improving the
// conditioning of a linear system is to precondition it. In its
// simplest form a preconditioner is a matrix M such that instead
// of solving Ax = b, we solve the linear system AM^{-1} y = b
// instead, where M is such that the condition number k(AM^{-1})
// is smaller than the conditioner k(A). Given the solution to
// this system, x = M^{-1} y. The iterative solver takes care of
// the mechanics of solving the preconditioned system and
// returning the corrected solution x. The user only needs to
// supply a linear operator.
//
// A null preconditioner is equivalent to an identity matrix being
// used a preconditioner.
LinearOperator* preconditioner = nullptr;
// The following tolerance related options only makes sense for
// iterative solvers. Direct solvers ignore them.
// Solver terminates when
//
// |Ax - b| <= r_tolerance * |b|.
//
// This is the most commonly used termination criterion for
// iterative solvers.
double r_tolerance = 0.0;
// For PSD matrices A, let
//
// Q(x) = x'Ax - 2b'x
//
// be the cost of the quadratic function defined by A and b. Then,
// the solver terminates at iteration i if
//
// i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
//
// This termination criterion is more useful when using CG to
// solve the Newton step. This particular convergence test comes
// from Stephen Nash's work on truncated Newton
// methods. References:
//
// 1. Stephen G. Nash & Ariela Sofer, Assessing A Search
// Direction Within A Truncated Newton Method, Operation
// Research Letters 9(1990) 219-221.
//
// 2. Stephen G. Nash, A Survey of Truncated Newton Methods,
// Journal of Computational and Applied Mathematics,
// 124(1-2), 45-59, 2000.
//
double q_tolerance = 0.0;
};
// Summary of a call to the Solve method. We should move away from
// the true/false method for determining solver success. We should
// let the summary object do the talking.
struct Summary {
double residual_norm = -1.0;
int num_iterations = -1;
LinearSolverTerminationType termination_type =
LinearSolverTerminationType::FAILURE;
std::string message;
};
// If the optimization problem is such that there are no remaining
// e-blocks, a Schur type linear solver cannot be used. If the
// linear solver is of Schur type, this function implements a policy
// to select an alternate nearest linear solver to the one selected
// by the user. The input linear_solver_type is returned otherwise.
static LinearSolverType LinearSolverForZeroEBlocks(
LinearSolverType linear_solver_type);
virtual ~LinearSolver();
// Solve Ax = b.
virtual Summary Solve(LinearOperator* A,
const double* b,
const PerSolveOptions& per_solve_options,
double* x) = 0;
// This method returns copies instead of references so that the base
// class implementation does not have to worry about life time
// issues. Further, this calls are not expected to be frequent or
// performance sensitive.
virtual std::map<std::string, CallStatistics> Statistics() const {
return {};
}
// Factory
static std::unique_ptr<LinearSolver> Create(const Options& options);
};
// This templated subclass of LinearSolver serves as a base class for
// other linear solvers that depend on the particular matrix layout of
// the underlying linear operator. For example some linear solvers
// need low level access to the TripletSparseMatrix implementing the
// LinearOperator interface. This class hides those implementation
// details behind a private virtual method, and has the Solve method
// perform the necessary upcasting.
template <typename MatrixType>
class TypedLinearSolver : public LinearSolver {
public:
LinearSolver::Summary Solve(
LinearOperator* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) override {
ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
CHECK(A != nullptr);
CHECK(b != nullptr);
CHECK(x != nullptr);
return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
}
std::map<std::string, CallStatistics> Statistics() const override {
return execution_summary_.statistics();
}
private:
virtual LinearSolver::Summary SolveImpl(
MatrixType* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) = 0;
ExecutionSummary execution_summary_;
};
// Linear solvers that depend on access to the low level structure of
// a SparseMatrix.
// clang-format off
typedef TypedLinearSolver<BlockSparseMatrix> BlockSparseMatrixSolver; // NOLINT
typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver; // NOLINT
typedef TypedLinearSolver<DenseSparseMatrix> DenseSparseMatrixSolver; // NOLINT
typedef TypedLinearSolver<TripletSparseMatrix> TripletSparseMatrixSolver; // NOLINT
// clang-format on
} // namespace ceres::internal
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_INTERNAL_LINEAR_SOLVER_H_