| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2024 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // mierle@gmail.com (Keir Mierle) |
| |
| #ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |
| #define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |
| |
| #include <cmath> |
| #include <memory> |
| #include <numeric> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "ceres/dynamic_cost_function.h" |
| #include "ceres/internal/fixed_array.h" |
| #include "ceres/jet.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| |
| // This autodiff implementation differs from the one found in |
| // autodiff_cost_function.h by supporting autodiff on cost functions |
| // with variable numbers of parameters with variable sizes. With the |
| // other implementation, all the sizes (both the number of parameter |
| // blocks and the size of each block) must be fixed at compile time. |
| // |
| // The functor API differs slightly from the API for fixed size |
| // autodiff; the expected interface for the cost functors is: |
| // |
| // struct MyCostFunctor { |
| // template<typename T> |
| // bool operator()(T const* const* parameters, T* residuals) const { |
| // // Use parameters[i] to access the i'th parameter block. |
| // } |
| // }; |
| // |
| // Since the sizing of the parameters is done at runtime, you must |
| // also specify the sizes after creating the dynamic autodiff cost |
| // function. For example: |
| // |
| // DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function; |
| // cost_function.AddParameterBlock(5); |
| // cost_function.AddParameterBlock(10); |
| // cost_function.SetNumResiduals(21); |
| // |
| // Under the hood, the implementation evaluates the cost function |
| // multiple times, computing a small set of the derivatives (four by |
| // default, controlled by the Stride template parameter) with each |
| // pass. There is a tradeoff with the size of the passes; you may want |
| // to experiment with the stride. |
| template <typename CostFunctor, int Stride = 4> |
| class DynamicAutoDiffCostFunction final : public DynamicCostFunction { |
| public: |
| // Constructs the CostFunctor on the heap and takes the ownership. |
| template <class... Args, |
| std::enable_if_t<std::is_constructible_v<CostFunctor, Args&&...>>* = |
| nullptr> |
| explicit DynamicAutoDiffCostFunction(Args&&... args) |
| // NOTE We explicitly use direct initialization using parentheses instead |
| // of uniform initialization using braces to avoid narrowing conversion |
| // warnings. |
| : DynamicAutoDiffCostFunction{ |
| std::make_unique<CostFunctor>(std::forward<Args>(args)...)} {} |
| |
| // Takes ownership by default. |
| explicit DynamicAutoDiffCostFunction(CostFunctor* functor, |
| Ownership ownership = TAKE_OWNERSHIP) |
| : DynamicAutoDiffCostFunction{std::unique_ptr<CostFunctor>{functor}, |
| ownership} {} |
| |
| explicit DynamicAutoDiffCostFunction(std::unique_ptr<CostFunctor> functor) |
| : DynamicAutoDiffCostFunction{std::move(functor), TAKE_OWNERSHIP} {} |
| |
| DynamicAutoDiffCostFunction(const DynamicAutoDiffCostFunction& other) = |
| delete; |
| DynamicAutoDiffCostFunction& operator=( |
| const DynamicAutoDiffCostFunction& other) = delete; |
| DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other) noexcept = |
| default; |
| DynamicAutoDiffCostFunction& operator=( |
| DynamicAutoDiffCostFunction&& other) noexcept = default; |
| |
| ~DynamicAutoDiffCostFunction() override { |
| // Manually release pointer if configured to not take ownership |
| // rather than deleting only if ownership is taken. This is to |
| // stay maximally compatible to old user code which may have |
| // forgotten to implement a virtual destructor, from when the |
| // AutoDiffCostFunction always took ownership. |
| if (ownership_ == DO_NOT_TAKE_OWNERSHIP) { |
| functor_.release(); |
| } |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const override { |
| CHECK_GT(num_residuals(), 0) |
| << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() " |
| << "before DynamicAutoDiffCostFunction::Evaluate()."; |
| |
| if (jacobians == nullptr) { |
| return (*functor_)(parameters, residuals); |
| } |
| |
| // The difficulty with Jets, as implemented in Ceres, is that they were |
| // originally designed for strictly compile-sized use. At this point, there |
| // is a large body of code that assumes inside a cost functor it is |
| // acceptable to do e.g. T(1.5) and get an appropriately sized jet back. |
| // |
| // Unfortunately, it is impossible to communicate the expected size of a |
| // dynamically sized jet to the static instantiations that existing code |
| // depends on. |
| // |
| // To work around this issue, the solution here is to evaluate the |
| // jacobians in a series of passes, each one computing Stride * |
| // num_residuals() derivatives. This is done with small, fixed-size jets. |
| const int num_parameter_blocks = |
| static_cast<int>(parameter_block_sizes().size()); |
| const int num_parameters = std::accumulate( |
| parameter_block_sizes().begin(), parameter_block_sizes().end(), 0); |
| |
| // Allocate scratch space for the strided evaluation. |
| using JetT = Jet<double, Stride>; |
| internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> input_jets( |
| num_parameters); |
| internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> output_jets( |
| num_residuals()); |
| |
| // Make the parameter pack that is sent to the functor (reused). |
| internal::FixedArray<Jet<double, Stride>*> jet_parameters( |
| num_parameter_blocks, nullptr); |
| int num_active_parameters = 0; |
| |
| // To handle constant parameters between non-constant parameter blocks, the |
| // start position --- a raw parameter index --- of each contiguous block of |
| // non-constant parameters is recorded in start_derivative_section. |
| std::vector<int> start_derivative_section; |
| bool in_derivative_section = false; |
| int parameter_cursor = 0; |
| |
| // Discover the derivative sections and set the parameter values. |
| for (int i = 0; i < num_parameter_blocks; ++i) { |
| jet_parameters[i] = &input_jets[parameter_cursor]; |
| |
| const int parameter_block_size = parameter_block_sizes()[i]; |
| if (jacobians[i] != nullptr) { |
| if (!in_derivative_section) { |
| start_derivative_section.push_back(parameter_cursor); |
| in_derivative_section = true; |
| } |
| |
| num_active_parameters += parameter_block_size; |
| } else { |
| in_derivative_section = false; |
| } |
| |
| for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) { |
| input_jets[parameter_cursor].a = parameters[i][j]; |
| } |
| } |
| |
| if (num_active_parameters == 0) { |
| return (*functor_)(parameters, residuals); |
| } |
| // When `num_active_parameters % Stride != 0` then it can be the case |
| // that `active_parameter_count < Stride` while parameter_cursor is less |
| // than the total number of parameters and with no remaining non-constant |
| // parameter blocks. Pushing parameter_cursor (the total number of |
| // parameters) as a final entry to start_derivative_section is required |
| // because if a constant parameter block is encountered after the |
| // last non-constant block then current_derivative_section is incremented |
| // and would otherwise index an invalid position in |
| // start_derivative_section. Setting the final element to the total number |
| // of parameters means that this can only happen at most once in the loop |
| // below. |
| start_derivative_section.push_back(parameter_cursor); |
| |
| // Evaluate all of the strides. Each stride is a chunk of the derivative to |
| // evaluate, typically some size proportional to the size of the SIMD |
| // registers of the CPU. |
| int num_strides = static_cast<int>( |
| ceil(num_active_parameters / static_cast<float>(Stride))); |
| |
| int current_derivative_section = 0; |
| int current_derivative_section_cursor = 0; |
| |
| for (int pass = 0; pass < num_strides; ++pass) { |
| // Set most of the jet components to zero, except for |
| // non-constant #Stride parameters. |
| const int initial_derivative_section = current_derivative_section; |
| const int initial_derivative_section_cursor = |
| current_derivative_section_cursor; |
| |
| int active_parameter_count = 0; |
| parameter_cursor = 0; |
| |
| for (int i = 0; i < num_parameter_blocks; ++i) { |
| for (int j = 0; j < parameter_block_sizes()[i]; |
| ++j, parameter_cursor++) { |
| input_jets[parameter_cursor].v.setZero(); |
| if (active_parameter_count < Stride && |
| parameter_cursor >= |
| (start_derivative_section[current_derivative_section] + |
| current_derivative_section_cursor)) { |
| if (jacobians[i] != nullptr) { |
| input_jets[parameter_cursor].v[active_parameter_count] = 1.0; |
| ++active_parameter_count; |
| ++current_derivative_section_cursor; |
| } else { |
| ++current_derivative_section; |
| current_derivative_section_cursor = 0; |
| } |
| } |
| } |
| } |
| |
| if (!(*functor_)(&jet_parameters[0], &output_jets[0])) { |
| return false; |
| } |
| |
| // Copy the pieces of the jacobians into their final place. |
| active_parameter_count = 0; |
| |
| current_derivative_section = initial_derivative_section; |
| current_derivative_section_cursor = initial_derivative_section_cursor; |
| |
| for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) { |
| for (int j = 0; j < parameter_block_sizes()[i]; |
| ++j, parameter_cursor++) { |
| if (active_parameter_count < Stride && |
| parameter_cursor >= |
| (start_derivative_section[current_derivative_section] + |
| current_derivative_section_cursor)) { |
| if (jacobians[i] != nullptr) { |
| for (int k = 0; k < num_residuals(); ++k) { |
| jacobians[i][k * parameter_block_sizes()[i] + j] = |
| output_jets[k].v[active_parameter_count]; |
| } |
| ++active_parameter_count; |
| ++current_derivative_section_cursor; |
| } else { |
| ++current_derivative_section; |
| current_derivative_section_cursor = 0; |
| } |
| } |
| } |
| } |
| |
| // Only copy the residuals over once (even though we compute them on |
| // every loop). |
| if (pass == num_strides - 1) { |
| for (int k = 0; k < num_residuals(); ++k) { |
| residuals[k] = output_jets[k].a; |
| } |
| } |
| } |
| return true; |
| } |
| |
| const CostFunctor& functor() const { return *functor_; } |
| |
| private: |
| explicit DynamicAutoDiffCostFunction(std::unique_ptr<CostFunctor> functor, |
| Ownership ownership) |
| : functor_(std::move(functor)), ownership_(ownership) {} |
| |
| std::unique_ptr<CostFunctor> functor_; |
| Ownership ownership_; |
| }; |
| |
| // Deduction guide that allows the user to avoid explicitly specifying the |
| // template parameter of DynamicAutoDiffCostFunction. The class can instead be |
| // instantiated as follows: |
| // |
| // new DynamicAutoDiffCostFunction{new MyCostFunctor{}}; |
| // new DynamicAutoDiffCostFunction{std::make_unique<MyCostFunctor>()}; |
| // |
| template <typename CostFunctor> |
| DynamicAutoDiffCostFunction(CostFunctor* functor) |
| -> DynamicAutoDiffCostFunction<CostFunctor>; |
| template <typename CostFunctor> |
| DynamicAutoDiffCostFunction(CostFunctor* functor, Ownership ownership) |
| -> DynamicAutoDiffCostFunction<CostFunctor>; |
| template <typename CostFunctor> |
| DynamicAutoDiffCostFunction(std::unique_ptr<CostFunctor> functor) |
| -> DynamicAutoDiffCostFunction<CostFunctor>; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |