blob: f3032bd63c8f141993f16b48e37bfd640061f8a6 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2022 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "bal_problem.h"
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <string>
#include <vector>
#include "Eigen/Core"
#include "ceres/rotation.h"
#include "glog/logging.h"
#include "random.h"
namespace ceres {
namespace examples {
namespace {
using VectorRef = Eigen::Map<Eigen::VectorXd>;
using ConstVectorRef = Eigen::Map<const Eigen::VectorXd>;
template <typename T>
void FscanfOrDie(FILE* fptr, const char* format, T* value) {
int num_scanned = fscanf(fptr, format, value);
if (num_scanned != 1) {
LOG(FATAL) << "Invalid UW data file.";
}
}
void PerturbPoint3(const double sigma, double* point) {
for (int i = 0; i < 3; ++i) {
point[i] += RandNormal() * sigma;
}
}
double Median(std::vector<double>* data) {
int n = data->size();
auto mid_point = data->begin() + n / 2;
std::nth_element(data->begin(), mid_point, data->end());
return *mid_point;
}
} // namespace
BALProblem::BALProblem(const std::string& filename, bool use_quaternions) {
FILE* fptr = fopen(filename.c_str(), "r");
if (fptr == nullptr) {
LOG(FATAL) << "Error: unable to open file " << filename;
return;
};
// This wil die horribly on invalid files. Them's the breaks.
FscanfOrDie(fptr, "%d", &num_cameras_);
FscanfOrDie(fptr, "%d", &num_points_);
FscanfOrDie(fptr, "%d", &num_observations_);
VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " "
<< num_observations_;
point_index_ = new int[num_observations_];
camera_index_ = new int[num_observations_];
observations_ = new double[2 * num_observations_];
num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
parameters_ = new double[num_parameters_];
for (int i = 0; i < num_observations_; ++i) {
FscanfOrDie(fptr, "%d", camera_index_ + i);
FscanfOrDie(fptr, "%d", point_index_ + i);
for (int j = 0; j < 2; ++j) {
FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);
}
}
for (int i = 0; i < num_parameters_; ++i) {
FscanfOrDie(fptr, "%lf", parameters_ + i);
}
fclose(fptr);
use_quaternions_ = use_quaternions;
if (use_quaternions) {
// Switch the angle-axis rotations to quaternions.
num_parameters_ = 10 * num_cameras_ + 3 * num_points_;
auto* quaternion_parameters = new double[num_parameters_];
double* original_cursor = parameters_;
double* quaternion_cursor = quaternion_parameters;
for (int i = 0; i < num_cameras_; ++i) {
AngleAxisToQuaternion(original_cursor, quaternion_cursor);
quaternion_cursor += 4;
original_cursor += 3;
for (int j = 4; j < 10; ++j) {
*quaternion_cursor++ = *original_cursor++;
}
}
// Copy the rest of the points.
for (int i = 0; i < 3 * num_points_; ++i) {
*quaternion_cursor++ = *original_cursor++;
}
// Swap in the quaternion parameters.
delete[] parameters_;
parameters_ = quaternion_parameters;
}
}
// This function writes the problem to a file in the same format that
// is read by the constructor.
void BALProblem::WriteToFile(const std::string& filename) const {
FILE* fptr = fopen(filename.c_str(), "w");
if (fptr == nullptr) {
LOG(FATAL) << "Error: unable to open file " << filename;
return;
};
fprintf(fptr, "%d %d %d\n", num_cameras_, num_points_, num_observations_);
for (int i = 0; i < num_observations_; ++i) {
fprintf(fptr, "%d %d", camera_index_[i], point_index_[i]);
for (int j = 0; j < 2; ++j) {
fprintf(fptr, " %g", observations_[2 * i + j]);
}
fprintf(fptr, "\n");
}
for (int i = 0; i < num_cameras(); ++i) {
double angleaxis[9];
if (use_quaternions_) {
// Output in angle-axis format.
QuaternionToAngleAxis(parameters_ + 10 * i, angleaxis);
memcpy(angleaxis + 3, parameters_ + 10 * i + 4, 6 * sizeof(double));
} else {
memcpy(angleaxis, parameters_ + 9 * i, 9 * sizeof(double));
}
for (double coeff : angleaxis) {
fprintf(fptr, "%.16g\n", coeff);
}
}
const double* points = parameters_ + camera_block_size() * num_cameras_;
for (int i = 0; i < num_points(); ++i) {
const double* point = points + i * point_block_size();
for (int j = 0; j < point_block_size(); ++j) {
fprintf(fptr, "%.16g\n", point[j]);
}
}
fclose(fptr);
}
// Write the problem to a PLY file for inspection in Meshlab or CloudCompare.
void BALProblem::WriteToPLYFile(const std::string& filename) const {
std::ofstream of(filename.c_str());
of << "ply" << '\n'
<< "format ascii 1.0" << '\n'
<< "element vertex " << num_cameras_ + num_points_ << '\n'
<< "property float x" << '\n'
<< "property float y" << '\n'
<< "property float z" << '\n'
<< "property uchar red" << '\n'
<< "property uchar green" << '\n'
<< "property uchar blue" << '\n'
<< "end_header" << std::endl;
// Export extrinsic data (i.e. camera centers) as green points.
double angle_axis[3];
double center[3];
for (int i = 0; i < num_cameras(); ++i) {
const double* camera = cameras() + camera_block_size() * i;
CameraToAngleAxisAndCenter(camera, angle_axis, center);
of << center[0] << ' ' << center[1] << ' ' << center[2] << " 0 255 0"
<< '\n';
}
// Export the structure (i.e. 3D Points) as white points.
const double* points = parameters_ + camera_block_size() * num_cameras_;
for (int i = 0; i < num_points(); ++i) {
const double* point = points + i * point_block_size();
for (int j = 0; j < point_block_size(); ++j) {
of << point[j] << ' ';
}
of << "255 255 255\n";
}
of.close();
}
void BALProblem::CameraToAngleAxisAndCenter(const double* camera,
double* angle_axis,
double* center) const {
VectorRef angle_axis_ref(angle_axis, 3);
if (use_quaternions_) {
QuaternionToAngleAxis(camera, angle_axis);
} else {
angle_axis_ref = ConstVectorRef(camera, 3);
}
// c = -R't
Eigen::VectorXd inverse_rotation = -angle_axis_ref;
AngleAxisRotatePoint(
inverse_rotation.data(), camera + camera_block_size() - 6, center);
VectorRef(center, 3) *= -1.0;
}
void BALProblem::AngleAxisAndCenterToCamera(const double* angle_axis,
const double* center,
double* camera) const {
ConstVectorRef angle_axis_ref(angle_axis, 3);
if (use_quaternions_) {
AngleAxisToQuaternion(angle_axis, camera);
} else {
VectorRef(camera, 3) = angle_axis_ref;
}
// t = -R * c
AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6);
VectorRef(camera + camera_block_size() - 6, 3) *= -1.0;
}
void BALProblem::Normalize() {
// Compute the marginal median of the geometry.
std::vector<double> tmp(num_points_);
Eigen::Vector3d median;
double* points = mutable_points();
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < num_points_; ++j) {
tmp[j] = points[3 * j + i];
}
median(i) = Median(&tmp);
}
for (int i = 0; i < num_points_; ++i) {
VectorRef point(points + 3 * i, 3);
tmp[i] = (point - median).lpNorm<1>();
}
const double median_absolute_deviation = Median(&tmp);
// Scale so that the median absolute deviation of the resulting
// reconstruction is 100.
const double scale = 100.0 / median_absolute_deviation;
VLOG(2) << "median: " << median.transpose();
VLOG(2) << "median absolute deviation: " << median_absolute_deviation;
VLOG(2) << "scale: " << scale;
// X = scale * (X - median)
for (int i = 0; i < num_points_; ++i) {
VectorRef point(points + 3 * i, 3);
point = scale * (point - median);
}
double* cameras = mutable_cameras();
double angle_axis[3];
double center[3];
for (int i = 0; i < num_cameras_; ++i) {
double* camera = cameras + camera_block_size() * i;
CameraToAngleAxisAndCenter(camera, angle_axis, center);
// center = scale * (center - median)
VectorRef(center, 3) = scale * (VectorRef(center, 3) - median);
AngleAxisAndCenterToCamera(angle_axis, center, camera);
}
}
void BALProblem::Perturb(const double rotation_sigma,
const double translation_sigma,
const double point_sigma) {
CHECK_GE(point_sigma, 0.0);
CHECK_GE(rotation_sigma, 0.0);
CHECK_GE(translation_sigma, 0.0);
double* points = mutable_points();
if (point_sigma > 0) {
for (int i = 0; i < num_points_; ++i) {
PerturbPoint3(point_sigma, points + 3 * i);
}
}
for (int i = 0; i < num_cameras_; ++i) {
double* camera = mutable_cameras() + camera_block_size() * i;
double angle_axis[3];
double center[3];
// Perturb in the rotation of the camera in the angle-axis
// representation.
CameraToAngleAxisAndCenter(camera, angle_axis, center);
if (rotation_sigma > 0.0) {
PerturbPoint3(rotation_sigma, angle_axis);
}
AngleAxisAndCenterToCamera(angle_axis, center, camera);
if (translation_sigma > 0.0) {
PerturbPoint3(translation_sigma, camera + camera_block_size() - 6);
}
}
}
BALProblem::~BALProblem() {
delete[] point_index_;
delete[] camera_index_;
delete[] observations_;
delete[] parameters_;
}
} // namespace examples
} // namespace ceres