| .. highlight:: c++ | 
 |  | 
 | .. default-domain:: cpp | 
 |  | 
 | .. cpp:namespace:: ceres | 
 |  | 
 | .. _chapter-gradient_tutorial: | 
 |  | 
 | ================================== | 
 | General Unconstrained Minimization | 
 | ================================== | 
 |  | 
 | Ceres Solver besides being able to solve non-linear least squares | 
 | problem can also solve general unconstrained problems using just their | 
 | objective function value and gradients. In this chapter we will see | 
 | how to do this. | 
 |  | 
 | Rosenbrock's Function | 
 | ===================== | 
 |  | 
 | Consider minimizing the famous `Rosenbrock's function | 
 | <http://en.wikipedia.org/wiki/Rosenbrock_function>`_ [#f1]_. | 
 |  | 
 | The simplest way to minimize is to define a templated functor to | 
 | evaluate the objective value of this function and then use Ceres | 
 | Solver's automatic differentiation to compute its derivatives. | 
 |  | 
 | We begin by defining a templated functor and then using | 
 | ``AutoDiffFirstOrderFunction`` to construct an instance of the | 
 | ``FirstOrderFunction`` interface. This is the object that is | 
 | responsible for computing the objective function value and the | 
 | gradient (if required). This is the analog of the | 
 | :class:`CostFunction` when defining non-linear least squares problems | 
 | in Ceres. | 
 |  | 
 | .. code:: | 
 |  | 
 |   // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
 |   struct Rosenbrock { | 
 |     template <typename T> | 
 |     bool operator()(const T* parameters, T* cost) const { | 
 |       const T x = parameters[0]; | 
 |       const T y = parameters[1]; | 
 |       cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
 |       return true; | 
 |     } | 
 |  | 
 |     static std::unique_ptr<ceres::FirstOrderFunction> Create() { | 
 |       constexpr int kNumParameters = 2; | 
 |       return std::make_unique< | 
 |           ceres::AutoDiffFirstOrderFunction<Rosenbrock, kNumParameters>>(); | 
 |     } | 
 |   }; | 
 |  | 
 |  | 
 | Minimizing it then is a straightforward matter of constructing a | 
 | :class:`GradientProblem` object and calling :func:`Solve` on it. | 
 |  | 
 | .. code:: | 
 |  | 
 |     double parameters[2] = {-1.2, 1.0}; | 
 |  | 
 |     ceres::GradientProblem problem(Rosenbrock::Create()); | 
 |  | 
 |     ceres::GradientProblemSolver::Options options; | 
 |     options.minimizer_progress_to_stdout = true; | 
 |     ceres::GradientProblemSolver::Summary summary; | 
 |     ceres::Solve(options, problem, parameters, &summary); | 
 |  | 
 |     std::cout << summary.FullReport() << "\n"; | 
 |  | 
 | Executing this code results, solve the problem using limited memory | 
 | `BFGS | 
 | <http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm>`_ | 
 | algorithm. | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |        0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e:  0 it: 1.19e-05 tt: 1.19e-05 | 
 |        1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e:  2 it: 7.30e-05 tt: 1.72e-04 | 
 |        2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e:  3 it: 1.60e-05 tt: 1.93e-04 | 
 |        3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 1.97e-04 | 
 |        4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e:  1 it: 1.19e-06 tt: 2.00e-04 | 
 |        5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e:  1 it: 9.54e-07 tt: 2.03e-04 | 
 |        6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.05e-04 | 
 |        7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e:  1 it: 9.54e-07 tt: 2.08e-04 | 
 |        8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e:  2 it: 2.15e-06 tt: 2.11e-04 | 
 |        9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.14e-04 | 
 |       10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e:  1 it: 0.00e+00 tt: 2.16e-04 | 
 |       11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e:  2 it: 1.91e-06 tt: 2.25e-04 | 
 |       12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.28e-04 | 
 |       13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e:  1 it: 9.54e-07 tt: 2.30e-04 | 
 |       14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.33e-04 | 
 |       15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 2.36e-04 | 
 |       16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e:  2 it: 1.91e-06 tt: 2.39e-04 | 
 |       17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 2.42e-04 | 
 |       18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e:  1 it: 9.54e-07 tt: 2.45e-04 | 
 |       19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e:  2 it: 1.91e-06 tt: 2.49e-04 | 
 |       20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e:  1 it: 2.15e-06 tt: 2.52e-04 | 
 |       21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e:  1 it: 8.82e-06 tt: 2.81e-04 | 
 |       22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e:  2 it: 7.87e-06 tt: 2.96e-04 | 
 |       23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.00e-04 | 
 |       24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e:  1 it: 1.19e-06 tt: 3.03e-04 | 
 |       25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.06e-04 | 
 |       26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 3.09e-04 | 
 |       27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.12e-04 | 
 |       28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.15e-04 | 
 |       29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.17e-04 | 
 |       30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.20e-04 | 
 |       31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.23e-04 | 
 |       32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.26e-04 | 
 |       33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 3.34e-04 | 
 |       34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.37e-04 | 
 |  | 
 |     Solver Summary (v 2.2.0-eigen-(3.4.0)-lapack-suitesparse-(7.1.0)-metis-(5.1.0)-acceleratesparse-eigensparse) | 
 |  | 
 |     Parameters                                  2 | 
 |     Line search direction              LBFGS (20) | 
 |     Line search type                  CUBIC WOLFE | 
 |  | 
 |  | 
 |     Cost: | 
 |     Initial                          2.420000e+01 | 
 |     Final                            1.955192e-27 | 
 |     Change                           2.420000e+01 | 
 |  | 
 |     Minimizer iterations                       36 | 
 |  | 
 |     Time (in seconds): | 
 |  | 
 |       Cost evaluation                    0.000000 (0) | 
 |       Gradient & cost evaluation         0.000000 (44) | 
 |       Polynomial minimization            0.000061 | 
 |     Total                                0.000438 | 
 |  | 
 |     Termination:                      CONVERGENCE (Parameter tolerance reached. Relative step_norm: 1.890726e-11 <= 1.000000e-08.) | 
 |  | 
 |     Initial x: -1.2 y: 1 | 
 |     Final   x: 1 y: 1 | 
 |  | 
 |  | 
 |  | 
 |  | 
 | If you are unable to use automatic differentiation for some reason | 
 | (say because you need to call an external library), then you can | 
 | use numeric differentiation. In that case the functor is defined as | 
 | follows [#f2]_. | 
 |  | 
 | .. code:: | 
 |  | 
 |   // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
 |   struct Rosenbrock { | 
 |     bool operator()(const double* parameters, double* cost) const { | 
 |       const double x = parameters[0]; | 
 |       const double y = parameters[1]; | 
 |       cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
 |       return true; | 
 |     } | 
 |  | 
 |     static std::unique_ptr<ceres::FirstOrderFunction> Create() { | 
 |       constexpr int kNumParameters = 2; | 
 |       return std::make_unique< | 
 |           ceres::NumericDiffFirstOrderFunction<Rosenbrock, | 
 |                                                ceres::CENTRAL, | 
 |                                                kNumParameters>>(); | 
 |     } | 
 |   }; | 
 |  | 
 | And finally, if you would rather compute the derivatives by hand (say | 
 | because the size of the parameter vector is too large to be | 
 | automatically differentiated). Then you should define an instance of | 
 | `FirstOrderFunction`, which is the analog of :class:`CostFunction` for | 
 | non-linear least squares problems [#f3]_. | 
 |  | 
 | .. code:: | 
 |  | 
 |   // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
 |   class Rosenbrock final  : public ceres::FirstOrderFunction { | 
 |     public: | 
 |       bool Evaluate(const double* parameters, | 
 |                              double* cost, | 
 |                              double* gradient) const override { | 
 |          const double x = parameters[0]; | 
 |          const double y = parameters[1]; | 
 |  | 
 |          cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
 |          if (gradient) { | 
 |            gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; | 
 |            gradient[1] = 200.0 * (y - x * x); | 
 |          } | 
 |         return true; | 
 |      } | 
 |  | 
 |      int NumParameters() const override { return 2; } | 
 |   }; | 
 |  | 
 | .. rubric:: Footnotes | 
 |  | 
 | .. [#f1] `examples/rosenbrock.cc | 
 |    <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock.cc>`_ | 
 |  | 
 | .. [#f2] `examples/rosenbrock_numeric_diff.cc | 
 |    <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_numeric_diff.cc>`_ | 
 |  | 
 | .. [#f3] `examples/rosenbrock_analytic_diff.cc | 
 |    <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_analytic_diff.cc>`_ |