| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/dense_qr.h" | 
 |  | 
 | #include <memory> | 
 | #include <numeric> | 
 | #include <string> | 
 | #include <tuple> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "gmock/gmock.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | using Param = DenseLinearAlgebraLibraryType; | 
 |  | 
 | namespace { | 
 |  | 
 | std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
 |   return DenseLinearAlgebraLibraryTypeToString(info.param); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | class DenseQRTest : public ::testing::TestWithParam<Param> {}; | 
 |  | 
 | TEST_P(DenseQRTest, FactorAndSolve) { | 
 |   // TODO(sameeragarwal): Convert these tests into type parameterized tests so | 
 |   // that we can test the single and double precision solvers. | 
 |  | 
 |   using Scalar = double; | 
 |   using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>; | 
 |   using VectorType = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>; | 
 |  | 
 |   LinearSolver::Options options; | 
 |   ContextImpl context; | 
 | #ifndef CERES_NO_CUDA | 
 |   options.context = &context; | 
 |   std::string error; | 
 |   ASSERT_TRUE(context.InitCuda(&error)) << error; | 
 | #endif  // CERES_NO_CUDA | 
 |   options.dense_linear_algebra_library_type = GetParam(); | 
 |   const double kEpsilon = std::numeric_limits<double>::epsilon() * 1.5e4; | 
 |   std::unique_ptr<DenseQR> dense_qr = DenseQR::Create(options); | 
 |  | 
 |   const int kNumTrials = 10; | 
 |   const int kMinNumCols = 1; | 
 |   const int kMaxNumCols = 10; | 
 |   const int kMinRowsFactor = 1; | 
 |   const int kMaxRowsFactor = 3; | 
 |   for (int num_cols = kMinNumCols; num_cols < kMaxNumCols; ++num_cols) { | 
 |     for (int num_rows = kMinRowsFactor * num_cols; | 
 |          num_rows < kMaxRowsFactor * num_cols; | 
 |          ++num_rows) { | 
 |       for (int trial = 0; trial < kNumTrials; ++trial) { | 
 |         MatrixType lhs = MatrixType::Random(num_rows, num_cols); | 
 |         Vector x = VectorType::Random(num_cols); | 
 |         Vector rhs = lhs * x; | 
 |         Vector actual = Vector::Random(num_cols); | 
 |         LinearSolver::Summary summary; | 
 |         summary.termination_type = dense_qr->FactorAndSolve(num_rows, | 
 |                                                             num_cols, | 
 |                                                             lhs.data(), | 
 |                                                             rhs.data(), | 
 |                                                             actual.data(), | 
 |                                                             &summary.message); | 
 |         ASSERT_EQ(summary.termination_type, | 
 |                   LinearSolverTerminationType::SUCCESS); | 
 |         ASSERT_NEAR((x - actual).norm() / x.norm(), 0.0, kEpsilon) | 
 |             << "\nexpected: " << x.transpose() | 
 |             << "\nactual  : " << actual.transpose(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // NOTE: preprocessor directives in a macro are not standard conforming | 
 | decltype(auto) MakeValues() { | 
 |   return ::testing::Values(EIGEN | 
 | #ifndef CERES_NO_LAPACK | 
 |                            , | 
 |                            LAPACK | 
 | #endif | 
 | #ifndef CERES_NO_CUDA | 
 |                            , | 
 |                            CUDA | 
 | #endif | 
 |   ); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(_, DenseQRTest, MakeValues(), ParamInfoToString); | 
 |  | 
 | }  // namespace ceres::internal |