| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/parameter_block_ordering.h" | 
 |  | 
 | #include <cstddef> | 
 | #include <memory> | 
 | #include <vector> | 
 |  | 
 | #include "absl/container/flat_hash_set.h" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/graph.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "ceres/stl_util.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | using VertexSet = absl::flat_hash_set<ParameterBlock*>; | 
 |  | 
 | template <int M, int... Ns> | 
 | class DummyCostFunction : public SizedCostFunction<M, Ns...> { | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const final { | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | class SchurOrderingTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     // The explicit calls to AddParameterBlock are necessary because | 
 |     // the below tests depend on the specific numbering of the | 
 |     // parameter blocks. | 
 |     problem_.AddParameterBlock(x_, 3); | 
 |     problem_.AddParameterBlock(y_, 4); | 
 |     problem_.AddParameterBlock(z_, 5); | 
 |     problem_.AddParameterBlock(w_, 6); | 
 |  | 
 |     problem_.AddResidualBlock(new DummyCostFunction<2, 3>, nullptr, x_); | 
 |     problem_.AddResidualBlock(new DummyCostFunction<6, 5, 4>, nullptr, z_, y_); | 
 |     problem_.AddResidualBlock(new DummyCostFunction<3, 3, 5>, nullptr, x_, z_); | 
 |     problem_.AddResidualBlock(new DummyCostFunction<7, 5, 3>, nullptr, z_, x_); | 
 |     problem_.AddResidualBlock( | 
 |         new DummyCostFunction<1, 5, 3, 6>, nullptr, z_, x_, w_); | 
 |   } | 
 |  | 
 |   ProblemImpl problem_; | 
 |   double x_[3], y_[4], z_[5], w_[6]; | 
 | }; | 
 |  | 
 | TEST_F(SchurOrderingTest, NoFixed) { | 
 |   const Program& program = problem_.program(); | 
 |   const std::vector<ParameterBlock*>& parameter_blocks = | 
 |       program.parameter_blocks(); | 
 |   auto graph = CreateHessianGraph(program); | 
 |  | 
 |   const VertexSet& vertices = graph->vertices(); | 
 |   EXPECT_EQ(vertices.size(), 4); | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_TRUE(vertices.find(parameter_blocks[i]) != vertices.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[0]); | 
 |     EXPECT_EQ(neighbors.size(), 2); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[3]) != neighbors.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[1]); | 
 |     EXPECT_EQ(neighbors.size(), 1); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[2]); | 
 |     EXPECT_EQ(neighbors.size(), 3); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[0]) != neighbors.end()); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[1]) != neighbors.end()); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[3]) != neighbors.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[3]); | 
 |     EXPECT_EQ(neighbors.size(), 2); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[0]) != neighbors.end()); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(SchurOrderingTest, AllFixed) { | 
 |   problem_.SetParameterBlockConstant(x_); | 
 |   problem_.SetParameterBlockConstant(y_); | 
 |   problem_.SetParameterBlockConstant(z_); | 
 |   problem_.SetParameterBlockConstant(w_); | 
 |  | 
 |   const Program& program = problem_.program(); | 
 |   auto graph = CreateHessianGraph(program); | 
 |   EXPECT_EQ(graph->vertices().size(), 0); | 
 | } | 
 |  | 
 | TEST_F(SchurOrderingTest, OneFixed) { | 
 |   problem_.SetParameterBlockConstant(x_); | 
 |  | 
 |   const Program& program = problem_.program(); | 
 |   const std::vector<ParameterBlock*>& parameter_blocks = | 
 |       program.parameter_blocks(); | 
 |   auto graph = CreateHessianGraph(program); | 
 |  | 
 |   const VertexSet& vertices = graph->vertices(); | 
 |  | 
 |   EXPECT_EQ(vertices.size(), 3); | 
 |   EXPECT_TRUE(vertices.find(parameter_blocks[0]) == vertices.end()); | 
 |  | 
 |   for (int i = 1; i < 3; ++i) { | 
 |     EXPECT_TRUE(vertices.find(parameter_blocks[i]) != vertices.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[1]); | 
 |     EXPECT_EQ(neighbors.size(), 1); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[2]); | 
 |     EXPECT_EQ(neighbors.size(), 2); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[1]) != neighbors.end()); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[3]) != neighbors.end()); | 
 |   } | 
 |  | 
 |   { | 
 |     const VertexSet& neighbors = graph->Neighbors(parameter_blocks[3]); | 
 |     EXPECT_EQ(neighbors.size(), 1); | 
 |     EXPECT_TRUE(neighbors.find(parameter_blocks[2]) != neighbors.end()); | 
 |   } | 
 |  | 
 |   // The constant parameter block is at the end. | 
 |   std::vector<ParameterBlock*> ordering; | 
 |   ComputeSchurOrdering(program, &ordering); | 
 |   EXPECT_EQ(ordering.back(), parameter_blocks[0]); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |