|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: vitus@google.com (Mike Vitus) | 
|  | //         jodebo_beck@gmx.de (Johannes Beck) | 
|  |  | 
|  | #ifndef CERES_PUBLIC_INTERNAL_SPHERE_MANIFOLD_HELPERS_H_ | 
|  | #define CERES_PUBLIC_INTERNAL_SPHERE_MANIFOLD_HELPERS_H_ | 
|  |  | 
|  | #include "ceres/constants.h" | 
|  | #include "ceres/internal/householder_vector.h" | 
|  |  | 
|  | // This module contains functions to compute the SphereManifold plus and minus | 
|  | // operator and their Jacobians. | 
|  | // | 
|  | // As the parameters to these functions are shared between them, they are | 
|  | // described here: The following variable names are used: | 
|  | //  Plus(x, delta) = x + delta = x_plus_delta, | 
|  | //  Minus(y, x) = y - x = y_minus_x. | 
|  | // | 
|  | // The remaining ones are v and beta which describe the Householder | 
|  | // transformation of x, and norm_delta which is the norm of delta. | 
|  | // | 
|  | // The types of x, y, x_plus_delta and y_minus_x need to be equivalent to | 
|  | // Eigen::Matrix<double, AmbientSpaceDimension, 1> and the type of delta needs | 
|  | // to be equivalent to Eigen::Matrix<double, TangentSpaceDimension, 1>. | 
|  | // | 
|  | // The type of Jacobian plus needs to be equivalent to Eigen::Matrix<double, | 
|  | // AmbientSpaceDimension, TangentSpaceDimension, Eigen::RowMajor> and for | 
|  | // Jacobian minus Eigen::Matrix<double, TangentSpaceDimension, | 
|  | // AmbientSpaceDimension, Eigen::RowMajor>. | 
|  | // | 
|  | // For all vector / matrix inputs and outputs, template parameters are | 
|  | // used in order to allow also Eigen::Ref and Eigen block expressions to | 
|  | // be passed to the function. | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | template <typename VT, typename XT, typename DeltaT, typename XPlusDeltaT> | 
|  | inline void ComputeSphereManifoldPlus(const VT& v, | 
|  | double beta, | 
|  | const XT& x, | 
|  | const DeltaT& delta, | 
|  | const double norm_delta, | 
|  | XPlusDeltaT* x_plus_delta) { | 
|  | constexpr int AmbientDim = VT::RowsAtCompileTime; | 
|  |  | 
|  | // Map the delta from the minimum representation to the over parameterized | 
|  | // homogeneous vector. See B.2 p.25 equation (106) - (107) for more details. | 
|  | const double sin_delta_by_delta = std::sin(norm_delta) / norm_delta; | 
|  |  | 
|  | Eigen::Matrix<double, AmbientDim, 1> y(v.size()); | 
|  | y << sin_delta_by_delta * delta, std::cos(norm_delta); | 
|  |  | 
|  | // Apply the delta update to remain on the sphere. | 
|  | *x_plus_delta = x.norm() * ApplyHouseholderVector(y, v, beta); | 
|  | } | 
|  |  | 
|  | template <typename VT, typename JacobianT> | 
|  | inline void ComputeSphereManifoldPlusJacobian(const VT& x, | 
|  | JacobianT* jacobian) { | 
|  | constexpr int AmbientSpaceDim = VT::RowsAtCompileTime; | 
|  | using AmbientVector = Eigen::Matrix<double, AmbientSpaceDim, 1>; | 
|  | const int ambient_size = x.size(); | 
|  | const int tangent_size = x.size() - 1; | 
|  |  | 
|  | AmbientVector v(ambient_size); | 
|  | double beta; | 
|  |  | 
|  | // NOTE: The explicit template arguments are needed here because | 
|  | // ComputeHouseholderVector is templated and some versions of MSVC | 
|  | // have trouble deducing the type of v automatically. | 
|  | ComputeHouseholderVector<VT, double, AmbientSpaceDim>(x, &v, &beta); | 
|  |  | 
|  | // The Jacobian is equal to J = H.leftCols(size_ - 1) where H is the | 
|  | // Householder matrix (H = I - beta * v * v'). | 
|  | for (int i = 0; i < tangent_size; ++i) { | 
|  | (*jacobian).col(i) = -beta * v(i) * v; | 
|  | (*jacobian)(i, i) += 1.0; | 
|  | } | 
|  | (*jacobian) *= x.norm(); | 
|  | } | 
|  |  | 
|  | template <typename VT, typename XT, typename YT, typename YMinusXT> | 
|  | inline void ComputeSphereManifoldMinus( | 
|  | const VT& v, double beta, const XT& x, const YT& y, YMinusXT* y_minus_x) { | 
|  | constexpr int AmbientSpaceDim = VT::RowsAtCompileTime; | 
|  | constexpr int TangentSpaceDim = | 
|  | AmbientSpaceDim == Eigen::Dynamic ? Eigen::Dynamic : AmbientSpaceDim - 1; | 
|  | using AmbientVector = Eigen::Matrix<double, AmbientSpaceDim, 1>; | 
|  |  | 
|  | const int tangent_size = v.size() - 1; | 
|  |  | 
|  | const AmbientVector hy = ApplyHouseholderVector(y, v, beta) / x.norm(); | 
|  |  | 
|  | // Calculate y - x. See B.2 p.25 equation (108). | 
|  | const double y_last = hy[tangent_size]; | 
|  | const double hy_norm = hy.template head<TangentSpaceDim>(tangent_size).norm(); | 
|  | if (hy_norm == 0.0) { | 
|  | y_minus_x->setZero(); | 
|  | y_minus_x->data()[tangent_size - 1] = y_last >= 0 ? 0.0 : constants::pi; | 
|  | } else { | 
|  | *y_minus_x = std::atan2(hy_norm, y_last) / hy_norm * | 
|  | hy.template head<TangentSpaceDim>(tangent_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename VT, typename JacobianT> | 
|  | inline void ComputeSphereManifoldMinusJacobian(const VT& x, | 
|  | JacobianT* jacobian) { | 
|  | constexpr int AmbientSpaceDim = VT::RowsAtCompileTime; | 
|  | using AmbientVector = Eigen::Matrix<double, AmbientSpaceDim, 1>; | 
|  | const int ambient_size = x.size(); | 
|  | const int tangent_size = x.size() - 1; | 
|  |  | 
|  | AmbientVector v(ambient_size); | 
|  | double beta; | 
|  |  | 
|  | // NOTE: The explicit template arguments are needed here because | 
|  | // ComputeHouseholderVector is templated and some versions of MSVC | 
|  | // have trouble deducing the type of v automatically. | 
|  | ComputeHouseholderVector<VT, double, AmbientSpaceDim>(x, &v, &beta); | 
|  |  | 
|  | // The Jacobian is equal to J = H.leftCols(size_ - 1) where H is the | 
|  | // Householder matrix (H = I - beta * v * v'). | 
|  | for (int i = 0; i < tangent_size; ++i) { | 
|  | // NOTE: The transpose is used for correctness (the product is expected to | 
|  | // be a row vector), although here there seems to be no difference between | 
|  | // transposing or not for Eigen (possibly a compile-time auto fix). | 
|  | (*jacobian).row(i) = -beta * v(i) * v.transpose(); | 
|  | (*jacobian)(i, i) += 1.0; | 
|  | } | 
|  | (*jacobian) /= x.norm(); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #endif |