| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/block_jacobi_preconditioner.h" | 
 |  | 
 | #include <memory> | 
 | #include <mutex> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/block_random_access_diagonal_matrix.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/casts.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/parallel_for.h" | 
 | #include "ceres/small_blas.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | BlockSparseJacobiPreconditioner::BlockSparseJacobiPreconditioner( | 
 |     Preconditioner::Options options, const BlockSparseMatrix& A) | 
 |     : options_(std::move(options)) { | 
 |   m_ = std::make_unique<BlockRandomAccessDiagonalMatrix>( | 
 |       A.block_structure()->cols, options_.context, options_.num_threads); | 
 | } | 
 |  | 
 | BlockSparseJacobiPreconditioner::~BlockSparseJacobiPreconditioner() = default; | 
 |  | 
 | bool BlockSparseJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A, | 
 |                                                  const double* D) { | 
 |   const CompressedRowBlockStructure* bs = A.block_structure(); | 
 |   const double* values = A.values(); | 
 |   m_->SetZero(); | 
 |  | 
 |   ParallelFor(options_.context, | 
 |               0, | 
 |               bs->rows.size(), | 
 |               options_.num_threads, | 
 |               [this, bs, values](int i) { | 
 |                 const int row_block_size = bs->rows[i].block.size; | 
 |                 const std::vector<Cell>& cells = bs->rows[i].cells; | 
 |                 for (const auto& cell : cells) { | 
 |                   const int block_id = cell.block_id; | 
 |                   const int col_block_size = bs->cols[block_id].size; | 
 |                   int r, c, row_stride, col_stride; | 
 |                   CellInfo* cell_info = m_->GetCell( | 
 |                       block_id, block_id, &r, &c, &row_stride, &col_stride); | 
 |                   MatrixRef m(cell_info->values, row_stride, col_stride); | 
 |                   ConstMatrixRef b( | 
 |                       values + cell.position, row_block_size, col_block_size); | 
 |                   auto lock = | 
 |                       MakeConditionalLock(options_.num_threads, cell_info->m); | 
 |                   // clang-format off | 
 |                   MatrixTransposeMatrixMultiply<Eigen::Dynamic, Eigen::Dynamic, | 
 |                       Eigen::Dynamic,Eigen::Dynamic, 1>( | 
 |                           values + cell.position, row_block_size,col_block_size, | 
 |                           values + cell.position, row_block_size,col_block_size, | 
 |                           cell_info->values,r, c,row_stride,col_stride); | 
 |                   // clang-format on | 
 |                 } | 
 |               }); | 
 |  | 
 |   if (D != nullptr) { | 
 |     // Add the diagonal. | 
 |     ParallelFor(options_.context, | 
 |                 0, | 
 |                 bs->cols.size(), | 
 |                 options_.num_threads, | 
 |                 [this, bs, D](int i) { | 
 |                   const int block_size = bs->cols[i].size; | 
 |                   int r, c, row_stride, col_stride; | 
 |                   CellInfo* cell_info = | 
 |                       m_->GetCell(i, i, &r, &c, &row_stride, &col_stride); | 
 |                   MatrixRef m(cell_info->values, row_stride, col_stride); | 
 |                   m.block(r, c, block_size, block_size).diagonal() += | 
 |                       ConstVectorRef(D + bs->cols[i].position, block_size) | 
 |                           .array() | 
 |                           .square() | 
 |                           .matrix(); | 
 |                 }); | 
 |   } | 
 |  | 
 |   m_->Invert(); | 
 |   return true; | 
 | } | 
 |  | 
 | BlockCRSJacobiPreconditioner::BlockCRSJacobiPreconditioner( | 
 |     Preconditioner::Options options, const CompressedRowSparseMatrix& A) | 
 |     : options_(std::move(options)), locks_(A.col_blocks().size()) { | 
 |   auto& col_blocks = A.col_blocks(); | 
 |  | 
 |   // Compute the number of non-zeros in the preconditioner. This is needed so | 
 |   // that we can construct the CompressedRowSparseMatrix. | 
 |   const int m_nnz = SumSquaredSizes(col_blocks); | 
 |   m_ = std::make_unique<CompressedRowSparseMatrix>( | 
 |       A.num_cols(), A.num_cols(), m_nnz); | 
 |  | 
 |   const int num_col_blocks = col_blocks.size(); | 
 |  | 
 |   // Populate the sparsity structure of the preconditioner matrix. | 
 |   int* m_cols = m_->mutable_cols(); | 
 |   int* m_rows = m_->mutable_rows(); | 
 |   m_rows[0] = 0; | 
 |   for (int i = 0, idx = 0; i < num_col_blocks; ++i) { | 
 |     // For each column block populate a diagonal block in the preconditioner. | 
 |     // Not that the because of the way the CompressedRowSparseMatrix format | 
 |     // works, the entire diagonal block is laid out contiguously in memory as a | 
 |     // row-major matrix. We will use this when updating the block. | 
 |     auto& block = col_blocks[i]; | 
 |     for (int j = 0; j < block.size; ++j) { | 
 |       for (int k = 0; k < block.size; ++k, ++idx) { | 
 |         m_cols[idx] = block.position + k; | 
 |       } | 
 |       m_rows[block.position + j + 1] = idx; | 
 |     } | 
 |   } | 
 |  | 
 |   // In reality we only need num_col_blocks locks, however that would require | 
 |   // that in UpdateImpl we are able to look up the column block from the it | 
 |   // first column. To save ourselves this map we will instead spend a few extra | 
 |   // lock objects. | 
 |   std::vector<std::mutex> locks(A.num_cols()); | 
 |   locks_.swap(locks); | 
 |   CHECK_EQ(m_rows[A.num_cols()], m_nnz); | 
 | } | 
 |  | 
 | BlockCRSJacobiPreconditioner::~BlockCRSJacobiPreconditioner() = default; | 
 |  | 
 | bool BlockCRSJacobiPreconditioner::UpdateImpl( | 
 |     const CompressedRowSparseMatrix& A, const double* D) { | 
 |   const auto& col_blocks = A.col_blocks(); | 
 |   const auto& row_blocks = A.row_blocks(); | 
 |   const int num_col_blocks = col_blocks.size(); | 
 |   const int num_row_blocks = row_blocks.size(); | 
 |  | 
 |   const int* a_rows = A.rows(); | 
 |   const int* a_cols = A.cols(); | 
 |   const double* a_values = A.values(); | 
 |   double* m_values = m_->mutable_values(); | 
 |   const int* m_rows = m_->rows(); | 
 |  | 
 |   m_->SetZero(); | 
 |  | 
 |   ParallelFor( | 
 |       options_.context, | 
 |       0, | 
 |       num_row_blocks, | 
 |       options_.num_threads, | 
 |       [this, row_blocks, a_rows, a_cols, a_values, m_values, m_rows](int i) { | 
 |         const int row = row_blocks[i].position; | 
 |         const int row_block_size = row_blocks[i].size; | 
 |         const int row_nnz = a_rows[row + 1] - a_rows[row]; | 
 |         ConstMatrixRef row_block( | 
 |             a_values + a_rows[row], row_block_size, row_nnz); | 
 |         int c = 0; | 
 |         while (c < row_nnz) { | 
 |           const int idx = a_rows[row] + c; | 
 |           const int col = a_cols[idx]; | 
 |           const int col_block_size = m_rows[col + 1] - m_rows[col]; | 
 |  | 
 |           // We make use of the fact that the entire diagonal block is | 
 |           // stored contiguously in memory as a row-major matrix. | 
 |           MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size); | 
 |           // We do not have a row_stride version of | 
 |           // MatrixTransposeMatrixMultiply, otherwise we could use it | 
 |           // here to further speed up the following expression. | 
 |           auto b = row_block.middleCols(c, col_block_size); | 
 |           auto lock = MakeConditionalLock(options_.num_threads, locks_[col]); | 
 |           m.noalias() += b.transpose() * b; | 
 |           c += col_block_size; | 
 |         } | 
 |       }); | 
 |  | 
 |   ParallelFor( | 
 |       options_.context, | 
 |       0, | 
 |       num_col_blocks, | 
 |       options_.num_threads, | 
 |       [col_blocks, m_rows, m_values, D](int i) { | 
 |         const int col = col_blocks[i].position; | 
 |         const int col_block_size = col_blocks[i].size; | 
 |         MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size); | 
 |  | 
 |         if (D != nullptr) { | 
 |           m.diagonal() += | 
 |               ConstVectorRef(D + col, col_block_size).array().square().matrix(); | 
 |         } | 
 |  | 
 |         // TODO(sameeragarwal): Deal with Cholesky inversion failure here and | 
 |         // elsewhere. | 
 |         m = m.llt().solve(Matrix::Identity(col_block_size, col_block_size)); | 
 |       }); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |