| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Example of minimizing the Rosenbrock function | 
 | // (https://en.wikipedia.org/wiki/Rosenbrock_function) using | 
 | // GradientProblemSolver using derivatives computed using numeric | 
 | // differentiation. | 
 |  | 
 | #include <iostream> | 
 |  | 
 | #include "absl/log/initialize.h" | 
 | #include "ceres/ceres.h" | 
 |  | 
 | // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
 | struct Rosenbrock { | 
 |   bool operator()(const double* parameters, double* cost) const { | 
 |     const double x = parameters[0]; | 
 |     const double y = parameters[1]; | 
 |     cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
 |     return true; | 
 |   } | 
 |  | 
 |   static ceres::FirstOrderFunction* Create() { | 
 |     constexpr int kNumParameters = 2; | 
 |     return new ceres::NumericDiffFirstOrderFunction<Rosenbrock, | 
 |                                                     ceres::CENTRAL, | 
 |                                                     kNumParameters>( | 
 |         new Rosenbrock); | 
 |   } | 
 | }; | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   absl::InitializeLog(); | 
 |  | 
 |   double parameters[2] = {-1.2, 1.0}; | 
 |  | 
 |   ceres::GradientProblemSolver::Options options; | 
 |   options.minimizer_progress_to_stdout = true; | 
 |  | 
 |   ceres::GradientProblemSolver::Summary summary; | 
 |   ceres::GradientProblem problem(Rosenbrock::Create()); | 
 |   ceres::Solve(options, problem, parameters, &summary); | 
 |  | 
 |   std::cout << summary.FullReport() << "\n"; | 
 |   std::cout << "Initial x: " << -1.2 << " y: " << 1.0 << "\n"; | 
 |   std::cout << "Final   x: " << parameters[0] << " y: " << parameters[1] | 
 |             << "\n"; | 
 |   return 0; | 
 | } |