|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/block_random_access_sparse_matrix.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/container/btree_set.h" | 
|  | #include "absl/log/check.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/parallel_vector_ops.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix( | 
|  | const std::vector<Block>& blocks, | 
|  | const absl::btree_set<std::pair<int, int>>& block_pairs, | 
|  | ContextImpl* context, | 
|  | int num_threads) | 
|  | : blocks_(blocks), context_(context), num_threads_(num_threads) { | 
|  | CHECK_LE(blocks.size(), std::numeric_limits<std::int32_t>::max()); | 
|  |  | 
|  | const int num_cols = NumScalarEntries(blocks); | 
|  | const int num_blocks = blocks.size(); | 
|  |  | 
|  | std::vector<int> num_cells_at_row(num_blocks); | 
|  | for (auto& p : block_pairs) { | 
|  | ++num_cells_at_row[p.first]; | 
|  | } | 
|  | auto block_structure_ = new CompressedRowBlockStructure; | 
|  | block_structure_->cols = blocks; | 
|  | block_structure_->rows.resize(num_blocks); | 
|  | auto p = block_pairs.begin(); | 
|  | int num_nonzeros = 0; | 
|  | // Pairs of block indices are sorted lexicographically, thus pairs | 
|  | // corresponding to a single row-block are stored in segments of index pairs | 
|  | // with constant row-block index and increasing column-block index. | 
|  | // CompressedRowBlockStructure is created by traversing block_pairs set. | 
|  | for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) { | 
|  | auto& row = block_structure_->rows[row_block_id]; | 
|  | row.block = blocks[row_block_id]; | 
|  | row.cells.reserve(num_cells_at_row[row_block_id]); | 
|  | const int row_block_size = blocks[row_block_id].size; | 
|  | // Process all index pairs corresponding to the current row block. Because | 
|  | // index pairs are sorted lexicographically, cells are being appended to the | 
|  | // current row-block till the first change in row-block index | 
|  | for (; p != block_pairs.end() && row_block_id == p->first; ++p) { | 
|  | const int col_block_id = p->second; | 
|  | row.cells.emplace_back(col_block_id, num_nonzeros); | 
|  | num_nonzeros += row_block_size * blocks[col_block_id].size; | 
|  | } | 
|  | } | 
|  | bsm_ = std::make_unique<BlockSparseMatrix>(block_structure_); | 
|  | VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] " | 
|  | << num_nonzeros; | 
|  | double* values = bsm_->mutable_values(); | 
|  | for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) { | 
|  | const auto& cells = block_structure_->rows[row_block_id].cells; | 
|  | for (auto& c : cells) { | 
|  | const int col_block_id = c.block_id; | 
|  | double* const data = values + c.position; | 
|  | layout_.emplace(IntPairToInt64(row_block_id, col_block_id), data); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id, | 
|  | int col_block_id, | 
|  | int* row, | 
|  | int* col, | 
|  | int* row_stride, | 
|  | int* col_stride) { | 
|  | const auto it = layout_.find(IntPairToInt64(row_block_id, col_block_id)); | 
|  | if (it == layout_.end()) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Each cell is stored contiguously as its own little dense matrix. | 
|  | *row = 0; | 
|  | *col = 0; | 
|  | *row_stride = blocks_[row_block_id].size; | 
|  | *col_stride = blocks_[col_block_id].size; | 
|  | return &it->second; | 
|  | } | 
|  |  | 
|  | // Assume that the user does not hold any locks on any cell blocks | 
|  | // when they are calling SetZero. | 
|  | void BlockRandomAccessSparseMatrix::SetZero() { | 
|  | bsm_->SetZero(context_, num_threads_); | 
|  | } | 
|  |  | 
|  | void BlockRandomAccessSparseMatrix::SymmetricRightMultiplyAndAccumulate( | 
|  | const double* x, double* y) const { | 
|  | const auto bs = bsm_->block_structure(); | 
|  | const auto values = bsm_->values(); | 
|  | const int num_blocks = blocks_.size(); | 
|  |  | 
|  | for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) { | 
|  | const auto& row_block = bs->rows[row_block_id]; | 
|  | const int row_block_size = row_block.block.size; | 
|  | const int row_block_pos = row_block.block.position; | 
|  |  | 
|  | for (auto& c : row_block.cells) { | 
|  | const int col_block_id = c.block_id; | 
|  | const int col_block_size = blocks_[col_block_id].size; | 
|  | const int col_block_pos = blocks_[col_block_id].position; | 
|  |  | 
|  | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | values + c.position, | 
|  | row_block_size, | 
|  | col_block_size, | 
|  | x + col_block_pos, | 
|  | y + row_block_pos); | 
|  | if (col_block_id == row_block_id) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Since the matrix is symmetric, but only the upper triangular | 
|  | // part is stored, if the block being accessed is not a diagonal | 
|  | // block, then use the same block to do the corresponding lower | 
|  | // triangular multiply also | 
|  | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | values + c.position, | 
|  | row_block_size, | 
|  | col_block_size, | 
|  | x + row_block_pos, | 
|  | y + col_block_pos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |