|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) | 
|  |  | 
|  | #include <string> | 
|  |  | 
|  | #include "ceres/dense_cholesky.h" | 
|  | #include "ceres/internal/config.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | #ifndef CERES_NO_CUDA | 
|  |  | 
|  | TEST(CUDADenseCholesky, InvalidOptionOnCreate) { | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | auto dense_cuda_solver = CUDADenseCholesky::Create(options); | 
|  | EXPECT_EQ(dense_cuda_solver, nullptr); | 
|  | } | 
|  |  | 
|  | // Tests the CUDA Cholesky solver with a simple 4x4 matrix. | 
|  | TEST(CUDADenseCholesky, Cholesky4x4Matrix) { | 
|  | Eigen::Matrix4d A; | 
|  | // clang-format off | 
|  | A <<  4,  12, -16, 0, | 
|  | 12,  37, -43, 0, | 
|  | -16, -43,  98, 0, | 
|  | 0,   0,   0, 1; | 
|  | // clang-format on | 
|  |  | 
|  | Vector b = Eigen::Vector4d::Ones(); | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = CUDA; | 
|  | auto dense_cuda_solver = CUDADenseCholesky::Create(options); | 
|  | ASSERT_NE(dense_cuda_solver, nullptr); | 
|  | std::string error_string; | 
|  | ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string), | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | Eigen::Vector4d x = Eigen::Vector4d::Zero(); | 
|  | ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string), | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 10; | 
|  | const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); | 
|  | EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(CUDADenseCholesky, SingularMatrix) { | 
|  | Eigen::Matrix3d A; | 
|  | // clang-format off | 
|  | A <<  1, 0, 0, | 
|  | 0, 1, 0, | 
|  | 0, 0, 0; | 
|  | // clang-format on | 
|  |  | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = CUDA; | 
|  | auto dense_cuda_solver = CUDADenseCholesky::Create(options); | 
|  | ASSERT_NE(dense_cuda_solver, nullptr); | 
|  | std::string error_string; | 
|  | ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string), | 
|  | LinearSolverTerminationType::FAILURE); | 
|  | } | 
|  |  | 
|  | TEST(CUDADenseCholesky, NegativeMatrix) { | 
|  | Eigen::Matrix3d A; | 
|  | // clang-format off | 
|  | A <<  1, 0, 0, | 
|  | 0, 1, 0, | 
|  | 0, 0, -1; | 
|  | // clang-format on | 
|  |  | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = CUDA; | 
|  | auto dense_cuda_solver = CUDADenseCholesky::Create(options); | 
|  | ASSERT_NE(dense_cuda_solver, nullptr); | 
|  | std::string error_string; | 
|  | ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string), | 
|  | LinearSolverTerminationType::FAILURE); | 
|  | } | 
|  |  | 
|  | TEST(CUDADenseCholesky, MustFactorizeBeforeSolve) { | 
|  | const Eigen::Vector3d b = Eigen::Vector3d::Ones(); | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = CUDA; | 
|  | auto dense_cuda_solver = CUDADenseCholesky::Create(options); | 
|  | ASSERT_NE(dense_cuda_solver, nullptr); | 
|  | std::string error_string; | 
|  | ASSERT_EQ(dense_cuda_solver->Solve(b.data(), nullptr, &error_string), | 
|  | LinearSolverTerminationType::FATAL_ERROR); | 
|  | } | 
|  |  | 
|  | TEST(CUDADenseCholesky, Randomized1600x1600Tests) { | 
|  | const int kNumCols = 1600; | 
|  | using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>; | 
|  | using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>; | 
|  | using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>; | 
|  |  | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = ceres::CUDA; | 
|  | std::unique_ptr<DenseCholesky> dense_cholesky = | 
|  | CUDADenseCholesky::Create(options); | 
|  |  | 
|  | const int kNumTrials = 20; | 
|  | for (int i = 0; i < kNumTrials; ++i) { | 
|  | LhsType lhs = LhsType::Random(kNumCols, kNumCols); | 
|  | lhs = lhs.transpose() * lhs; | 
|  | lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols); | 
|  | SolutionType x_expected = SolutionType::Random(kNumCols); | 
|  | RhsType rhs = lhs * x_expected; | 
|  | SolutionType x_computed = SolutionType::Zero(kNumCols); | 
|  | // Sanity check the random matrix sizes. | 
|  | EXPECT_EQ(lhs.rows(), kNumCols); | 
|  | EXPECT_EQ(lhs.cols(), kNumCols); | 
|  | EXPECT_EQ(rhs.rows(), kNumCols); | 
|  | EXPECT_EQ(rhs.cols(), 1); | 
|  | EXPECT_EQ(x_expected.rows(), kNumCols); | 
|  | EXPECT_EQ(x_expected.cols(), 1); | 
|  | EXPECT_EQ(x_computed.rows(), kNumCols); | 
|  | EXPECT_EQ(x_computed.cols(), 1); | 
|  | LinearSolver::Summary summary; | 
|  | summary.termination_type = dense_cholesky->FactorAndSolve( | 
|  | kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message); | 
|  | ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
|  | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 3e5; | 
|  | ASSERT_NEAR( | 
|  | (x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CUDADenseCholeskyMixedPrecision, InvalidOptionsOnCreate) { | 
|  | { | 
|  | // Did not ask for CUDA, and did not ask for mixed precision. | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); | 
|  | ASSERT_EQ(solver, nullptr); | 
|  | } | 
|  | { | 
|  | // Asked for CUDA, but did not ask for mixed precision. | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = ceres::CUDA; | 
|  | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); | 
|  | ASSERT_EQ(solver, nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests the CUDA Cholesky solver with a simple 4x4 matrix. | 
|  | TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix1Step) { | 
|  | Eigen::Matrix4d A; | 
|  | // clang-format off | 
|  | // A common test Cholesky decomposition test matrix, see : | 
|  | // https://en.wikipedia.org/w/index.php?title=Cholesky_decomposition&oldid=1080607368#Example | 
|  | A <<  4,  12, -16, 0, | 
|  | 12,  37, -43, 0, | 
|  | -16, -43,  98, 0, | 
|  | 0,   0,   0, 1; | 
|  | // clang-format on | 
|  |  | 
|  | const Eigen::Vector4d b = Eigen::Vector4d::Ones(); | 
|  | LinearSolver::Options options; | 
|  | options.max_num_refinement_iterations = 0; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = CUDA; | 
|  | options.use_mixed_precision_solves = true; | 
|  | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); | 
|  | ASSERT_NE(solver, nullptr); | 
|  | std::string error_string; | 
|  | ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string), | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | Eigen::Vector4d x = Eigen::Vector4d::Zero(); | 
|  | ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string), | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | // A single step of the mixed precision solver will be equivalent to solving | 
|  | // in low precision (FP32). Hence the tolerance is defined w.r.t. FP32 epsilon | 
|  | // instead of FP64 epsilon. | 
|  | static const double kEpsilon = std::numeric_limits<float>::epsilon() * 10; | 
|  | const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); | 
|  | EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon); | 
|  | } | 
|  |  | 
|  | // Tests the CUDA Cholesky solver with a simple 4x4 matrix. | 
|  | TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix4Steps) { | 
|  | Eigen::Matrix4d A; | 
|  | // clang-format off | 
|  | A <<  4,  12, -16, 0, | 
|  | 12,  37, -43, 0, | 
|  | -16, -43,  98, 0, | 
|  | 0,   0,   0, 1; | 
|  | // clang-format on | 
|  |  | 
|  | const Eigen::Vector4d b = Eigen::Vector4d::Ones(); | 
|  | LinearSolver::Options options; | 
|  | options.max_num_refinement_iterations = 3; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = CUDA; | 
|  | options.use_mixed_precision_solves = true; | 
|  | auto solver = CUDADenseCholeskyMixedPrecision::Create(options); | 
|  | ASSERT_NE(solver, nullptr); | 
|  | std::string error_string; | 
|  | ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string), | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | Eigen::Vector4d x = Eigen::Vector4d::Zero(); | 
|  | ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string), | 
|  | LinearSolverTerminationType::SUCCESS); | 
|  | // The error does not reduce beyond four iterations, and stagnates at this | 
|  | // level of precision. | 
|  | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 100; | 
|  | const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); | 
|  | EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon); | 
|  | EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST(CUDADenseCholeskyMixedPrecision, Randomized1600x1600Tests) { | 
|  | const int kNumCols = 1600; | 
|  | using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>; | 
|  | using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>; | 
|  | using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>; | 
|  |  | 
|  | LinearSolver::Options options; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | std::string error; | 
|  | EXPECT_TRUE(context.InitCuda(&error)) << error; | 
|  | options.dense_linear_algebra_library_type = ceres::CUDA; | 
|  | options.use_mixed_precision_solves = true; | 
|  | options.max_num_refinement_iterations = 20; | 
|  | std::unique_ptr<CUDADenseCholeskyMixedPrecision> dense_cholesky = | 
|  | CUDADenseCholeskyMixedPrecision::Create(options); | 
|  |  | 
|  | const int kNumTrials = 20; | 
|  | for (int i = 0; i < kNumTrials; ++i) { | 
|  | LhsType lhs = LhsType::Random(kNumCols, kNumCols); | 
|  | lhs = lhs.transpose() * lhs; | 
|  | lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols); | 
|  | SolutionType x_expected = SolutionType::Random(kNumCols); | 
|  | RhsType rhs = lhs * x_expected; | 
|  | SolutionType x_computed = SolutionType::Zero(kNumCols); | 
|  | // Sanity check the random matrix sizes. | 
|  | EXPECT_EQ(lhs.rows(), kNumCols); | 
|  | EXPECT_EQ(lhs.cols(), kNumCols); | 
|  | EXPECT_EQ(rhs.rows(), kNumCols); | 
|  | EXPECT_EQ(rhs.cols(), 1); | 
|  | EXPECT_EQ(x_expected.rows(), kNumCols); | 
|  | EXPECT_EQ(x_expected.cols(), 1); | 
|  | EXPECT_EQ(x_computed.rows(), kNumCols); | 
|  | EXPECT_EQ(x_computed.cols(), 1); | 
|  | LinearSolver::Summary summary; | 
|  | summary.termination_type = dense_cholesky->FactorAndSolve( | 
|  | kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message); | 
|  | ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
|  | static const double kEpsilon = std::numeric_limits<double>::epsilon() * 1e6; | 
|  | ASSERT_NEAR( | 
|  | (x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // CERES_NO_CUDA | 
|  |  | 
|  | }  // namespace ceres::internal |