|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/block_random_access_sparse_matrix.h" | 
|  |  | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | TEST(BlockRandomAccessSparseMatrix, GetCell) { | 
|  | ContextImpl context; | 
|  | constexpr int num_threads = 1; | 
|  | std::vector<Block> blocks; | 
|  | blocks.emplace_back(3, 0); | 
|  | blocks.emplace_back(4, 3); | 
|  | blocks.emplace_back(5, 7); | 
|  | constexpr int num_rows = 3 + 4 + 5; | 
|  |  | 
|  | std::set<std::pair<int, int>> block_pairs; | 
|  | int num_nonzeros = 0; | 
|  | block_pairs.emplace(0, 0); | 
|  | num_nonzeros += blocks[0].size * blocks[0].size; | 
|  |  | 
|  | block_pairs.emplace(1, 1); | 
|  | num_nonzeros += blocks[1].size * blocks[1].size; | 
|  |  | 
|  | block_pairs.emplace(1, 2); | 
|  | num_nonzeros += blocks[1].size * blocks[2].size; | 
|  |  | 
|  | block_pairs.emplace(0, 2); | 
|  | num_nonzeros += blocks[2].size * blocks[0].size; | 
|  |  | 
|  | BlockRandomAccessSparseMatrix m(blocks, block_pairs, &context, num_threads); | 
|  | EXPECT_EQ(m.num_rows(), num_rows); | 
|  | EXPECT_EQ(m.num_cols(), num_rows); | 
|  |  | 
|  | for (const auto& block_pair : block_pairs) { | 
|  | const int row_block_id = block_pair.first; | 
|  | const int col_block_id = block_pair.second; | 
|  | int row; | 
|  | int col; | 
|  | int row_stride; | 
|  | int col_stride; | 
|  | CellInfo* cell = m.GetCell( | 
|  | row_block_id, col_block_id, &row, &col, &row_stride, &col_stride); | 
|  | EXPECT_TRUE(cell != nullptr); | 
|  | EXPECT_EQ(row, 0); | 
|  | EXPECT_EQ(col, 0); | 
|  | EXPECT_EQ(row_stride, blocks[row_block_id].size); | 
|  | EXPECT_EQ(col_stride, blocks[col_block_id].size); | 
|  |  | 
|  | // Write into the block | 
|  | MatrixRef(cell->values, row_stride, col_stride) | 
|  | .block(row, col, blocks[row_block_id].size, blocks[col_block_id].size) = | 
|  | (row_block_id + 1) * (col_block_id + 1) * | 
|  | Matrix::Ones(blocks[row_block_id].size, blocks[col_block_id].size); | 
|  | } | 
|  |  | 
|  | const BlockSparseMatrix* bsm = m.matrix(); | 
|  | EXPECT_EQ(bsm->num_nonzeros(), num_nonzeros); | 
|  |  | 
|  | Matrix dense; | 
|  | bsm->ToDenseMatrix(&dense); | 
|  |  | 
|  | double kTolerance = 1e-14; | 
|  |  | 
|  | // (0, 0) | 
|  | EXPECT_NEAR( | 
|  | (dense.block(0, 0, 3, 3) - Matrix::Ones(3, 3)).norm(), 0.0, kTolerance); | 
|  | // (1, 1) | 
|  | EXPECT_NEAR((dense.block(3, 3, 4, 4) - 2 * 2 * Matrix::Ones(4, 4)).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  | // (1, 2) | 
|  | EXPECT_NEAR((dense.block(3, 3 + 4, 4, 5) - 2 * 3 * Matrix::Ones(4, 5)).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  | // (0, 2) | 
|  | EXPECT_NEAR((dense.block(0, 3 + 4, 3, 5) - 3 * 1 * Matrix::Ones(3, 5)).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  |  | 
|  | // There is nothing else in the matrix besides these four blocks. | 
|  | EXPECT_NEAR( | 
|  | dense.norm(), sqrt(9. + 16. * 16. + 36. * 20. + 9. * 15.), kTolerance); | 
|  |  | 
|  | Vector x = Vector::Ones(dense.rows()); | 
|  | Vector actual_y = Vector::Zero(dense.rows()); | 
|  | Vector expected_y = Vector::Zero(dense.rows()); | 
|  |  | 
|  | expected_y += dense.selfadjointView<Eigen::Upper>() * x; | 
|  | m.SymmetricRightMultiplyAndAccumulate(x.data(), actual_y.data()); | 
|  | EXPECT_NEAR((expected_y - actual_y).norm(), 0.0, kTolerance) | 
|  | << "actual: " << actual_y.transpose() << "\n" | 
|  | << "expected: " << expected_y.transpose() << "matrix: \n " << dense; | 
|  | } | 
|  |  | 
|  | // IntPairToInt64 is private, thus this fixture is needed to access and | 
|  | // test it. | 
|  | class BlockRandomAccessSparseMatrixTest : public ::testing::Test { | 
|  | public: | 
|  | void SetUp() final { | 
|  | std::vector<Block> blocks; | 
|  | blocks.emplace_back(1, 0); | 
|  | std::set<std::pair<int, int>> block_pairs; | 
|  | block_pairs.emplace(0, 0); | 
|  | m_ = std::make_unique<BlockRandomAccessSparseMatrix>( | 
|  | blocks, block_pairs, &context_, 1); | 
|  | } | 
|  |  | 
|  | void CheckIntPairToInt64(int a, int b) { | 
|  | int64_t value = m_->IntPairToInt64(a, b); | 
|  | EXPECT_GT(value, 0) << "Overflow a = " << a << " b = " << b; | 
|  | EXPECT_GT(value, a) << "Overflow a = " << a << " b = " << b; | 
|  | EXPECT_GT(value, b) << "Overflow a = " << a << " b = " << b; | 
|  | } | 
|  |  | 
|  | void CheckInt64ToIntPair() { | 
|  | uint64_t max_rows = m_->kRowShift; | 
|  | for (int row = max_rows - 10; row < max_rows; ++row) { | 
|  | for (int col = 0; col < 10; ++col) { | 
|  | int row_computed; | 
|  | int col_computed; | 
|  | m_->Int64ToIntPair( | 
|  | m_->IntPairToInt64(row, col), &row_computed, &col_computed); | 
|  | EXPECT_EQ(row, row_computed); | 
|  | EXPECT_EQ(col, col_computed); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | ContextImpl context_; | 
|  | std::unique_ptr<BlockRandomAccessSparseMatrix> m_; | 
|  | }; | 
|  |  | 
|  | TEST_F(BlockRandomAccessSparseMatrixTest, IntPairToInt64Overflow) { | 
|  | CheckIntPairToInt64(std::numeric_limits<int32_t>::max(), | 
|  | std::numeric_limits<int32_t>::max()); | 
|  | } | 
|  |  | 
|  | TEST_F(BlockRandomAccessSparseMatrixTest, Int64ToIntPair) { | 
|  | CheckInt64ToIntPair(); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |