|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "benchmark/benchmark.h" | 
|  | #include "ceres/invert_psd_matrix.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | template <int kSize> | 
|  | void BenchmarkFixedSizedInvertPSDMatrix(benchmark::State& state) { | 
|  | using MatrixType = typename EigenTypes<kSize, kSize>::Matrix; | 
|  | MatrixType input = MatrixType::Random(); | 
|  | input += input.transpose() + MatrixType::Identity(); | 
|  |  | 
|  | MatrixType output; | 
|  | constexpr bool kAssumeFullRank = true; | 
|  | for (auto _ : state) { | 
|  | benchmark::DoNotOptimize( | 
|  | output = InvertPSDMatrix<kSize>(kAssumeFullRank, input)); | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 1); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 2); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 3); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 4); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 5); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 6); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 7); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 8); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 9); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 10); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 11); | 
|  | BENCHMARK_TEMPLATE(BenchmarkFixedSizedInvertPSDMatrix, 12); | 
|  |  | 
|  | static void BenchmarkDynamicallyInvertPSDMatrix(benchmark::State& state) { | 
|  | using MatrixType = | 
|  | typename EigenTypes<Eigen::Dynamic, Eigen::Dynamic>::Matrix; | 
|  | const int size = static_cast<int>(state.range(0)); | 
|  | MatrixType input = MatrixType::Random(size, size); | 
|  | input += input.transpose() + MatrixType::Identity(size, size); | 
|  |  | 
|  | MatrixType output; | 
|  | constexpr bool kAssumeFullRank = true; | 
|  | for (auto _ : state) { | 
|  | benchmark::DoNotOptimize( | 
|  | output = InvertPSDMatrix<Eigen::Dynamic>(kAssumeFullRank, input)); | 
|  | } | 
|  | } | 
|  |  | 
|  | BENCHMARK(BenchmarkDynamicallyInvertPSDMatrix) | 
|  | ->Apply([](benchmark::internal::Benchmark* benchmark) { | 
|  | for (int i = 1; i < 13; ++i) { | 
|  | benchmark->Args({i}); | 
|  | } | 
|  | }); | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | BENCHMARK_MAIN(); |