|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | //         sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // This tests the TrustRegionMinimizer loop using a direct Evaluator | 
|  | // implementation, rather than having a test that goes through all the | 
|  | // Program and Problem machinery. | 
|  |  | 
|  | #include "ceres/trust_region_minimizer.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <memory> | 
|  |  | 
|  | #include "absl/log/check.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "ceres/autodiff_cost_function.h" | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/dense_qr_solver.h" | 
|  | #include "ceres/dense_sparse_matrix.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/minimizer.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // Templated Evaluator for Powell's function. The template parameters | 
|  | // indicate which of the four variables/columns of the jacobian are | 
|  | // active. This is equivalent to constructing a problem and using the | 
|  | // SubsetManifold. This allows us to test the support for | 
|  | // the Evaluator::Plus operation besides checking for the basic | 
|  | // performance of the trust region algorithm. | 
|  | template <bool col1, bool col2, bool col3, bool col4> | 
|  | class PowellEvaluator2 : public Evaluator { | 
|  | public: | 
|  | // clang-format off | 
|  | PowellEvaluator2() | 
|  | : num_active_cols_( | 
|  | (col1 ? 1 : 0) + | 
|  | (col2 ? 1 : 0) + | 
|  | (col3 ? 1 : 0) + | 
|  | (col4 ? 1 : 0)) { | 
|  | VLOG(1) << "Columns: " | 
|  | << col1 << " " | 
|  | << col2 << " " | 
|  | << col3 << " " | 
|  | << col4; | 
|  | } | 
|  | // clang-format on | 
|  |  | 
|  | // Implementation of Evaluator interface. | 
|  | std::unique_ptr<SparseMatrix> CreateJacobian() const final { | 
|  | CHECK(col1 || col2 || col3 || col4); | 
|  | auto dense_jacobian = std::make_unique<DenseSparseMatrix>( | 
|  | NumResiduals(), NumEffectiveParameters()); | 
|  | dense_jacobian->SetZero(); | 
|  | return dense_jacobian; | 
|  | } | 
|  |  | 
|  | bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options, | 
|  | const double* state, | 
|  | double* cost, | 
|  | double* residuals, | 
|  | double* gradient, | 
|  | SparseMatrix* jacobian) final { | 
|  | const double x1 = state[0]; | 
|  | const double x2 = state[1]; | 
|  | const double x3 = state[2]; | 
|  | const double x4 = state[3]; | 
|  |  | 
|  | VLOG(1) << "State: " | 
|  | << "x1=" << x1 << ", " | 
|  | << "x2=" << x2 << ", " | 
|  | << "x3=" << x3 << ", " | 
|  | << "x4=" << x4 << "."; | 
|  |  | 
|  | const double f1 = x1 + 10.0 * x2; | 
|  | const double f2 = sqrt(5.0) * (x3 - x4); | 
|  | const double f3 = pow(x2 - 2.0 * x3, 2.0); | 
|  | const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0); | 
|  |  | 
|  | VLOG(1) << "Function: " | 
|  | << "f1=" << f1 << ", " | 
|  | << "f2=" << f2 << ", " | 
|  | << "f3=" << f3 << ", " | 
|  | << "f4=" << f4 << "."; | 
|  |  | 
|  | *cost = (f1 * f1 + f2 * f2 + f3 * f3 + f4 * f4) / 2.0; | 
|  |  | 
|  | VLOG(1) << "Cost: " << *cost; | 
|  |  | 
|  | if (residuals != nullptr) { | 
|  | residuals[0] = f1; | 
|  | residuals[1] = f2; | 
|  | residuals[2] = f3; | 
|  | residuals[3] = f4; | 
|  | } | 
|  |  | 
|  | if (jacobian != nullptr) { | 
|  | DenseSparseMatrix* dense_jacobian; | 
|  | dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian); | 
|  | dense_jacobian->SetZero(); | 
|  |  | 
|  | Matrix& jacobian_matrix = *(dense_jacobian->mutable_matrix()); | 
|  | CHECK_EQ(jacobian_matrix.cols(), num_active_cols_); | 
|  |  | 
|  | int column_index = 0; | 
|  | if (col1) { | 
|  | // clang-format off | 
|  | jacobian_matrix.col(column_index++) << | 
|  | 1.0, | 
|  | 0.0, | 
|  | 0.0, | 
|  | sqrt(10.0) * 2.0 * (x1 - x4); | 
|  | // clang-format on | 
|  | } | 
|  | if (col2) { | 
|  | // clang-format off | 
|  | jacobian_matrix.col(column_index++) << | 
|  | 10.0, | 
|  | 0.0, | 
|  | 2.0*(x2 - 2.0*x3), | 
|  | 0.0; | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | if (col3) { | 
|  | // clang-format off | 
|  | jacobian_matrix.col(column_index++) << | 
|  | 0.0, | 
|  | sqrt(5.0), | 
|  | 4.0*(2.0*x3 - x2), | 
|  | 0.0; | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | if (col4) { | 
|  | // clang-format off | 
|  | jacobian_matrix.col(column_index++) << | 
|  | 0.0, | 
|  | -sqrt(5.0), | 
|  | 0.0, | 
|  | sqrt(10.0) * 2.0 * (x4 - x1); | 
|  | // clang-format on | 
|  | } | 
|  | VLOG(1) << "\n" << jacobian_matrix; | 
|  | } | 
|  |  | 
|  | if (gradient != nullptr) { | 
|  | int column_index = 0; | 
|  | if (col1) { | 
|  | gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4); | 
|  | } | 
|  |  | 
|  | if (col2) { | 
|  | gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3); | 
|  | } | 
|  |  | 
|  | if (col3) { | 
|  | gradient[column_index++] = | 
|  | f2 * sqrt(5.0) + f3 * (4.0 * (2.0 * x3 - x2)); | 
|  | } | 
|  |  | 
|  | if (col4) { | 
|  | gradient[column_index++] = | 
|  | -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Plus(const double* state, | 
|  | const double* delta, | 
|  | double* state_plus_delta) const final { | 
|  | int delta_index = 0; | 
|  | state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]); | 
|  | state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]); | 
|  | state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]); | 
|  | state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int NumEffectiveParameters() const final { return num_active_cols_; } | 
|  | int NumParameters() const final { return 4; } | 
|  | int NumResiduals() const final { return 4; } | 
|  |  | 
|  | private: | 
|  | const int num_active_cols_; | 
|  | }; | 
|  |  | 
|  | // Templated function to hold a subset of the columns fixed and check | 
|  | // if the solver converges to the optimal values or not. | 
|  | template <bool col1, bool col2, bool col3, bool col4> | 
|  | void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) { | 
|  | Solver::Options solver_options; | 
|  | LinearSolver::Options linear_solver_options; | 
|  | DenseQRSolver linear_solver(linear_solver_options); | 
|  |  | 
|  | double parameters[4] = {3, -1, 0, 1.0}; | 
|  |  | 
|  | // If the column is inactive, then set its value to the optimal | 
|  | // value. | 
|  | parameters[0] = (col1 ? parameters[0] : 0.0); | 
|  | parameters[1] = (col2 ? parameters[1] : 0.0); | 
|  | parameters[2] = (col3 ? parameters[2] : 0.0); | 
|  | parameters[3] = (col4 ? parameters[3] : 0.0); | 
|  |  | 
|  | Minimizer::Options minimizer_options(solver_options); | 
|  | minimizer_options.gradient_tolerance = 1e-26; | 
|  | minimizer_options.function_tolerance = 1e-26; | 
|  | minimizer_options.parameter_tolerance = 1e-26; | 
|  | minimizer_options.evaluator = | 
|  | std::make_unique<PowellEvaluator2<col1, col2, col3, col4>>(); | 
|  | minimizer_options.jacobian = minimizer_options.evaluator->CreateJacobian(); | 
|  |  | 
|  | TrustRegionStrategy::Options trust_region_strategy_options; | 
|  | trust_region_strategy_options.trust_region_strategy_type = strategy_type; | 
|  | trust_region_strategy_options.linear_solver = &linear_solver; | 
|  | trust_region_strategy_options.initial_radius = 1e4; | 
|  | trust_region_strategy_options.max_radius = 1e20; | 
|  | trust_region_strategy_options.min_lm_diagonal = 1e-6; | 
|  | trust_region_strategy_options.max_lm_diagonal = 1e32; | 
|  | minimizer_options.trust_region_strategy = | 
|  | TrustRegionStrategy::Create(trust_region_strategy_options); | 
|  |  | 
|  | TrustRegionMinimizer minimizer; | 
|  | Solver::Summary summary; | 
|  | minimizer.Minimize(minimizer_options, parameters, &summary); | 
|  |  | 
|  | // The minimum is at x1 = x2 = x3 = x4 = 0. | 
|  | EXPECT_NEAR(0.0, parameters[0], 0.001); | 
|  | EXPECT_NEAR(0.0, parameters[1], 0.001); | 
|  | EXPECT_NEAR(0.0, parameters[2], 0.001); | 
|  | EXPECT_NEAR(0.0, parameters[3], 0.001); | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) { | 
|  | // This case is excluded because this has a local minimum and does | 
|  | // not find the optimum. This should not affect the correctness of | 
|  | // this test since we are testing all the other 14 combinations of | 
|  | // column activations. | 
|  | // | 
|  | //   IsSolveSuccessful<true, true, false, true>(); | 
|  |  | 
|  | const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT; | 
|  | // clang-format off | 
|  | IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy); | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) { | 
|  | // The following two cases are excluded because they encounter a | 
|  | // local minimum. | 
|  | // | 
|  | //  IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy); | 
|  | //  IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy); | 
|  |  | 
|  | const TrustRegionStrategyType kStrategy = DOGLEG; | 
|  | // clang-format off | 
|  | IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy); | 
|  | IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy); | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | class CurveCostFunction : public CostFunction { | 
|  | public: | 
|  | CurveCostFunction(int num_vertices, double target_length) | 
|  | : num_vertices_(num_vertices), target_length_(target_length) { | 
|  | set_num_residuals(1); | 
|  | for (int i = 0; i < num_vertices_; ++i) { | 
|  | mutable_parameter_block_sizes()->push_back(2); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const override { | 
|  | residuals[0] = target_length_; | 
|  |  | 
|  | for (int i = 0; i < num_vertices_; ++i) { | 
|  | int prev = (num_vertices_ + i - 1) % num_vertices_; | 
|  | double length = 0.0; | 
|  | for (int dim = 0; dim < 2; dim++) { | 
|  | const double diff = parameters[prev][dim] - parameters[i][dim]; | 
|  | length += diff * diff; | 
|  | } | 
|  | residuals[0] -= sqrt(length); | 
|  | } | 
|  |  | 
|  | if (jacobians == nullptr) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_vertices_; ++i) { | 
|  | if (jacobians[i] != nullptr) { | 
|  | int prev = (num_vertices_ + i - 1) % num_vertices_; | 
|  | int next = (i + 1) % num_vertices_; | 
|  |  | 
|  | double u[2], v[2]; | 
|  | double norm_u = 0., norm_v = 0.; | 
|  | for (int dim = 0; dim < 2; dim++) { | 
|  | u[dim] = parameters[i][dim] - parameters[prev][dim]; | 
|  | norm_u += u[dim] * u[dim]; | 
|  | v[dim] = parameters[next][dim] - parameters[i][dim]; | 
|  | norm_v += v[dim] * v[dim]; | 
|  | } | 
|  |  | 
|  | norm_u = sqrt(norm_u); | 
|  | norm_v = sqrt(norm_v); | 
|  |  | 
|  | for (int dim = 0; dim < 2; dim++) { | 
|  | jacobians[i][dim] = 0.; | 
|  |  | 
|  | if (norm_u > std::numeric_limits<double>::min()) { | 
|  | jacobians[i][dim] -= u[dim] / norm_u; | 
|  | } | 
|  |  | 
|  | if (norm_v > std::numeric_limits<double>::min()) { | 
|  | jacobians[i][dim] += v[dim] / norm_v; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int num_vertices_; | 
|  | double target_length_; | 
|  | }; | 
|  |  | 
|  | TEST(TrustRegionMinimizer, JacobiScalingTest) { | 
|  | int N = 6; | 
|  | std::vector<double*> y(N); | 
|  | const double pi = 3.1415926535897932384626433; | 
|  | for (int i = 0; i < N; i++) { | 
|  | double theta = i * 2. * pi / static_cast<double>(N); | 
|  | y[i] = new double[2]; | 
|  | y[i][0] = cos(theta); | 
|  | y[i][1] = sin(theta); | 
|  | } | 
|  |  | 
|  | Problem problem; | 
|  | problem.AddResidualBlock(new CurveCostFunction(N, 10.), nullptr, y); | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = ceres::DENSE_QR; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_LE(summary.final_cost, 1e-10); | 
|  |  | 
|  | for (int i = 0; i < N; i++) { | 
|  | delete[] y[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct ExpCostFunctor { | 
|  | template <typename T> | 
|  | bool operator()(const T* const x, T* residual) const { | 
|  | residual[0] = T(10.0) - exp(x[0]); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static CostFunction* Create() { | 
|  | return new AutoDiffCostFunction<ExpCostFunctor, 1, 1>(new ExpCostFunctor); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) { | 
|  | double x = 5; | 
|  | Problem problem; | 
|  | problem.AddResidualBlock(ExpCostFunctor::Create(), nullptr, &x); | 
|  | problem.SetParameterLowerBound(&x, 0, 3.0); | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_NEAR(3.0, x, 1e-12); | 
|  | const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2); | 
|  | EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |