|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/trust_region_preprocessor.h" | 
|  |  | 
|  | #include <numeric> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/log/check.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "absl/strings/str_format.h" | 
|  | #include "ceres/callbacks.h" | 
|  | #include "ceres/context_impl.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/event_logger.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/minimizer.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/preconditioner.h" | 
|  | #include "ceres/preprocessor.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/reorder_program.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | std::shared_ptr<ParameterBlockOrdering> CreateDefaultLinearSolverOrdering( | 
|  | const Program& program) { | 
|  | std::shared_ptr<ParameterBlockOrdering> ordering = | 
|  | std::make_shared<ParameterBlockOrdering>(); | 
|  | const std::vector<ParameterBlock*>& parameter_blocks = | 
|  | program.parameter_blocks(); | 
|  | for (auto* parameter_block : parameter_blocks) { | 
|  | ordering->AddElementToGroup( | 
|  | const_cast<double*>(parameter_block->user_state()), 0); | 
|  | } | 
|  | return ordering; | 
|  | } | 
|  |  | 
|  | // Check if all the user supplied values in the parameter blocks are | 
|  | // sane or not, and if the program is feasible or not. | 
|  | bool IsProgramValid(const Program& program, std::string* error) { | 
|  | return (program.ParameterBlocksAreFinite(error) && program.IsFeasible(error)); | 
|  | } | 
|  |  | 
|  | void AlternateLinearSolverAndPreconditionerForSchurTypeLinearSolver( | 
|  | Solver::Options* options) { | 
|  | if (!IsSchurType(options->linear_solver_type)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const LinearSolverType linear_solver_type_given = options->linear_solver_type; | 
|  | const PreconditionerType preconditioner_type_given = | 
|  | options->preconditioner_type; | 
|  | options->linear_solver_type = | 
|  | LinearSolver::LinearSolverForZeroEBlocks(linear_solver_type_given); | 
|  |  | 
|  | std::string message; | 
|  | if (linear_solver_type_given == ITERATIVE_SCHUR) { | 
|  | options->preconditioner_type = | 
|  | Preconditioner::PreconditionerForZeroEBlocks(preconditioner_type_given); | 
|  |  | 
|  | message = absl::StrFormat( | 
|  | "No E blocks. Switching from %s(%s) to %s(%s).", | 
|  | LinearSolverTypeToString(linear_solver_type_given), | 
|  | PreconditionerTypeToString(preconditioner_type_given), | 
|  | LinearSolverTypeToString(options->linear_solver_type), | 
|  | PreconditionerTypeToString(options->preconditioner_type)); | 
|  | } else { | 
|  | message = | 
|  | absl::StrFormat("No E blocks. Switching from %s to %s.", | 
|  | LinearSolverTypeToString(linear_solver_type_given), | 
|  | LinearSolverTypeToString(options->linear_solver_type)); | 
|  | } | 
|  | if (options->logging_type != SILENT) { | 
|  | VLOG(1) << message; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reorder the program to reduce fill-in and increase cache coherency. | 
|  | bool ReorderProgram(PreprocessedProblem* pp) { | 
|  | const Solver::Options& options = pp->options; | 
|  | if (IsSchurType(options.linear_solver_type)) { | 
|  | return ReorderProgramForSchurTypeLinearSolver( | 
|  | options.linear_solver_type, | 
|  | options.sparse_linear_algebra_library_type, | 
|  | options.linear_solver_ordering_type, | 
|  | pp->problem->parameter_map(), | 
|  | options.linear_solver_ordering.get(), | 
|  | pp->reduced_program.get(), | 
|  | &pp->error); | 
|  | } | 
|  |  | 
|  | if (options.linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
|  | !options.dynamic_sparsity) { | 
|  | return ReorderProgramForSparseCholesky( | 
|  | options.sparse_linear_algebra_library_type, | 
|  | options.linear_solver_ordering_type, | 
|  | *options.linear_solver_ordering, | 
|  | 0, /* use all the rows of the jacobian */ | 
|  | pp->reduced_program.get(), | 
|  | &pp->error); | 
|  | } | 
|  |  | 
|  | if (options.linear_solver_type == CGNR && | 
|  | options.preconditioner_type == SUBSET) { | 
|  | pp->linear_solver_options.subset_preconditioner_start_row_block = | 
|  | ReorderResidualBlocksByPartition( | 
|  | options.residual_blocks_for_subset_preconditioner, | 
|  | pp->reduced_program.get()); | 
|  |  | 
|  | return ReorderProgramForSparseCholesky( | 
|  | options.sparse_linear_algebra_library_type, | 
|  | options.linear_solver_ordering_type, | 
|  | *options.linear_solver_ordering, | 
|  | pp->linear_solver_options.subset_preconditioner_start_row_block, | 
|  | pp->reduced_program.get(), | 
|  | &pp->error); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Configure and create a linear solver object. In doing so, if a | 
|  | // sparse direct factorization based linear solver is being used, then | 
|  | // find a fill reducing ordering and reorder the program as needed | 
|  | // too. | 
|  | bool SetupLinearSolver(PreprocessedProblem* pp) { | 
|  | Solver::Options& options = pp->options; | 
|  | pp->linear_solver_options = LinearSolver::Options(); | 
|  |  | 
|  | if (!options.linear_solver_ordering) { | 
|  | // If the user has not supplied a linear solver ordering, then we | 
|  | // assume that they are giving all the freedom to us in choosing | 
|  | // the best possible ordering. This intent can be indicated by | 
|  | // putting all the parameter blocks in the same elimination group. | 
|  | options.linear_solver_ordering = | 
|  | CreateDefaultLinearSolverOrdering(*pp->reduced_program); | 
|  | } else { | 
|  | // If the user supplied an ordering, then check if the first | 
|  | // elimination group is still non-empty after the reduced problem | 
|  | // has been constructed. | 
|  | // | 
|  | // This is important for Schur type linear solvers, where the | 
|  | // first elimination group is special -- it needs to be an | 
|  | // independent set. | 
|  | // | 
|  | // If the first elimination group is empty, then we cannot use the | 
|  | // user's requested linear solver (and a preconditioner as the | 
|  | // case may be) so we must use a different one. | 
|  | ParameterBlockOrdering* ordering = options.linear_solver_ordering.get(); | 
|  | const int min_group_id = ordering->MinNonZeroGroup(); | 
|  | ordering->Remove(pp->removed_parameter_blocks); | 
|  | if (IsSchurType(options.linear_solver_type) && | 
|  | min_group_id != ordering->MinNonZeroGroup()) { | 
|  | AlternateLinearSolverAndPreconditionerForSchurTypeLinearSolver(&options); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reorder the program to reduce fill in and improve cache coherency | 
|  | // of the Jacobian. | 
|  | if (!ReorderProgram(pp)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Configure the linear solver. | 
|  | pp->linear_solver_options.min_num_iterations = | 
|  | options.min_linear_solver_iterations; | 
|  | pp->linear_solver_options.max_num_iterations = | 
|  | options.max_linear_solver_iterations; | 
|  | pp->linear_solver_options.type = options.linear_solver_type; | 
|  | pp->linear_solver_options.preconditioner_type = options.preconditioner_type; | 
|  | pp->linear_solver_options.use_spse_initialization = | 
|  | options.use_spse_initialization; | 
|  | pp->linear_solver_options.spse_tolerance = options.spse_tolerance; | 
|  | pp->linear_solver_options.max_num_spse_iterations = | 
|  | options.max_num_spse_iterations; | 
|  | pp->linear_solver_options.visibility_clustering_type = | 
|  | options.visibility_clustering_type; | 
|  | pp->linear_solver_options.sparse_linear_algebra_library_type = | 
|  | options.sparse_linear_algebra_library_type; | 
|  |  | 
|  | pp->linear_solver_options.dense_linear_algebra_library_type = | 
|  | options.dense_linear_algebra_library_type; | 
|  | pp->linear_solver_options.use_explicit_schur_complement = | 
|  | options.use_explicit_schur_complement; | 
|  | pp->linear_solver_options.dynamic_sparsity = options.dynamic_sparsity; | 
|  | pp->linear_solver_options.use_mixed_precision_solves = | 
|  | options.use_mixed_precision_solves; | 
|  | pp->linear_solver_options.max_num_refinement_iterations = | 
|  | options.max_num_refinement_iterations; | 
|  | pp->linear_solver_options.num_threads = options.num_threads; | 
|  | pp->linear_solver_options.context = pp->problem->context(); | 
|  |  | 
|  | if (IsSchurType(pp->linear_solver_options.type)) { | 
|  | OrderingToGroupSizes(options.linear_solver_ordering.get(), | 
|  | &pp->linear_solver_options.elimination_groups); | 
|  |  | 
|  | // Schur type solvers expect at least two elimination groups. If | 
|  | // there is only one elimination group, then it is guaranteed that | 
|  | // this group only contains e_blocks. Thus we add a dummy | 
|  | // elimination group with zero blocks in it. | 
|  | if (pp->linear_solver_options.elimination_groups.size() == 1) { | 
|  | pp->linear_solver_options.elimination_groups.push_back(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!options.dynamic_sparsity && | 
|  | AreJacobianColumnsOrdered(options.linear_solver_type, | 
|  | options.preconditioner_type, | 
|  | options.sparse_linear_algebra_library_type, | 
|  | options.linear_solver_ordering_type)) { | 
|  | pp->linear_solver_options.ordering_type = OrderingType::NATURAL; | 
|  | } else { | 
|  | if (options.linear_solver_ordering_type == ceres::AMD) { | 
|  | pp->linear_solver_options.ordering_type = OrderingType::AMD; | 
|  | } else if (options.linear_solver_ordering_type == ceres::NESDIS) { | 
|  | pp->linear_solver_options.ordering_type = OrderingType::NESDIS; | 
|  | } else { | 
|  | LOG(FATAL) << "Congratulations you have found a bug in Ceres Solver." | 
|  | << " Please report this to the maintainers. : " | 
|  | << options.linear_solver_ordering_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | pp->linear_solver = LinearSolver::Create(pp->linear_solver_options); | 
|  | return (pp->linear_solver != nullptr); | 
|  | } | 
|  |  | 
|  | // Configure and create the evaluator. | 
|  | bool SetupEvaluator(PreprocessedProblem* pp) { | 
|  | const Solver::Options& options = pp->options; | 
|  | pp->evaluator_options = Evaluator::Options(); | 
|  | pp->evaluator_options.linear_solver_type = options.linear_solver_type; | 
|  | pp->evaluator_options.sparse_linear_algebra_library_type = | 
|  | options.sparse_linear_algebra_library_type; | 
|  | pp->evaluator_options.num_eliminate_blocks = 0; | 
|  | if (IsSchurType(options.linear_solver_type)) { | 
|  | pp->evaluator_options.num_eliminate_blocks = | 
|  | options.linear_solver_ordering->group_to_elements() | 
|  | .begin() | 
|  | ->second.size(); | 
|  | } | 
|  |  | 
|  | pp->evaluator_options.num_threads = options.num_threads; | 
|  | pp->evaluator_options.dynamic_sparsity = options.dynamic_sparsity; | 
|  | pp->evaluator_options.context = pp->problem->context(); | 
|  | pp->evaluator_options.evaluation_callback = | 
|  | pp->reduced_program->mutable_evaluation_callback(); | 
|  | pp->evaluator = Evaluator::Create( | 
|  | pp->evaluator_options, pp->reduced_program.get(), &pp->error); | 
|  |  | 
|  | return (pp->evaluator != nullptr); | 
|  | } | 
|  |  | 
|  | // If the user requested inner iterations, then find an inner | 
|  | // iteration ordering as needed and configure and create a | 
|  | // CoordinateDescentMinimizer object to perform the inner iterations. | 
|  | bool SetupInnerIterationMinimizer(PreprocessedProblem* pp) { | 
|  | Solver::Options& options = pp->options; | 
|  | if (!options.use_inner_iterations) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (pp->reduced_program->mutable_evaluation_callback()) { | 
|  | pp->error = "Inner iterations cannot be used with EvaluationCallbacks"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // With just one parameter block, the outer iteration of the trust | 
|  | // region method and inner iterations are doing exactly the same | 
|  | // thing, and thus inner iterations are not needed. | 
|  | if (pp->reduced_program->NumParameterBlocks() == 1) { | 
|  | LOG(WARNING) << "Reduced problem only contains one parameter block." | 
|  | << "Disabling inner iterations."; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (options.inner_iteration_ordering != nullptr) { | 
|  | // If the user supplied an ordering, then remove the set of | 
|  | // inactive parameter blocks from it | 
|  | options.inner_iteration_ordering->Remove(pp->removed_parameter_blocks); | 
|  | if (options.inner_iteration_ordering->NumElements() == 0) { | 
|  | LOG(WARNING) << "No remaining elements in the inner iteration ordering."; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Validate the reduced ordering. | 
|  | if (!CoordinateDescentMinimizer::IsOrderingValid( | 
|  | *pp->reduced_program, | 
|  | *options.inner_iteration_ordering, | 
|  | &pp->error)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // The user did not supply an ordering, so create one. | 
|  | options.inner_iteration_ordering = | 
|  | CoordinateDescentMinimizer::CreateOrdering(*pp->reduced_program); | 
|  | } | 
|  |  | 
|  | pp->inner_iteration_minimizer = | 
|  | std::make_unique<CoordinateDescentMinimizer>(pp->problem->context()); | 
|  | return pp->inner_iteration_minimizer->Init(*pp->reduced_program, | 
|  | pp->problem->parameter_map(), | 
|  | *options.inner_iteration_ordering, | 
|  | &pp->error); | 
|  | } | 
|  |  | 
|  | // Configure and create a TrustRegionMinimizer object. | 
|  | bool SetupMinimizerOptions(PreprocessedProblem* pp) { | 
|  | const Solver::Options& options = pp->options; | 
|  |  | 
|  | SetupCommonMinimizerOptions(pp); | 
|  | pp->minimizer_options.is_constrained = | 
|  | pp->reduced_program->IsBoundsConstrained(); | 
|  | pp->minimizer_options.jacobian = pp->evaluator->CreateJacobian(); | 
|  | if (pp->minimizer_options.jacobian == nullptr) { | 
|  | pp->error = | 
|  | "Unable to create Jacobian matrix. Likely because it is too large."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | pp->minimizer_options.inner_iteration_minimizer = | 
|  | pp->inner_iteration_minimizer; | 
|  |  | 
|  | TrustRegionStrategy::Options strategy_options; | 
|  | strategy_options.linear_solver = pp->linear_solver.get(); | 
|  | strategy_options.initial_radius = options.initial_trust_region_radius; | 
|  | strategy_options.max_radius = options.max_trust_region_radius; | 
|  | strategy_options.min_lm_diagonal = options.min_lm_diagonal; | 
|  | strategy_options.max_lm_diagonal = options.max_lm_diagonal; | 
|  | strategy_options.trust_region_strategy_type = | 
|  | options.trust_region_strategy_type; | 
|  | strategy_options.dogleg_type = options.dogleg_type; | 
|  | strategy_options.context = pp->problem->context(); | 
|  | strategy_options.num_threads = options.num_threads; | 
|  | pp->minimizer_options.trust_region_strategy = | 
|  | TrustRegionStrategy::Create(strategy_options); | 
|  | CHECK(pp->minimizer_options.trust_region_strategy != nullptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool TrustRegionPreprocessor::Preprocess(const Solver::Options& options, | 
|  | ProblemImpl* problem, | 
|  | PreprocessedProblem* pp) { | 
|  | EventLogger event_logger("TrustRegionPreprocessor::Preprocess"); | 
|  | CHECK(pp != nullptr); | 
|  | pp->options = options; | 
|  | ChangeNumThreadsIfNeeded(&pp->options); | 
|  |  | 
|  | pp->problem = problem; | 
|  | Program* program = problem->mutable_program(); | 
|  | bool status = IsProgramValid(*program, &pp->error); | 
|  | event_logger.AddEvent("IsProgramValid"); | 
|  | if (!status) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | pp->reduced_program = program->CreateReducedProgram( | 
|  | &pp->removed_parameter_blocks, &pp->fixed_cost, &pp->error); | 
|  | event_logger.AddEvent("CreateReducedProgram"); | 
|  | if (pp->reduced_program.get() == nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (pp->reduced_program->NumParameterBlocks() == 0) { | 
|  | // The reduced problem has no parameter or residual blocks. There | 
|  | // is nothing more to do. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | status = SetupLinearSolver(pp); | 
|  | event_logger.AddEvent("SetupLinearSolver"); | 
|  | if (!status) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | status = SetupEvaluator(pp); | 
|  | event_logger.AddEvent("SetupEvaluator"); | 
|  | if (!status) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | status = SetupInnerIterationMinimizer(pp); | 
|  | event_logger.AddEvent("SetupInnerIterations"); | 
|  | if (!status) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | status = SetupMinimizerOptions(pp); | 
|  | event_logger.AddEvent("SetupMinimizerOptions"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |