| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/dense_normal_cholesky_solver.h" | 
 |  | 
 | #include <utility> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/dense_sparse_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | DenseNormalCholeskySolver::DenseNormalCholeskySolver( | 
 |     LinearSolver::Options options) | 
 |     : options_(std::move(options)), | 
 |       cholesky_(DenseCholesky::Create(options_)) {} | 
 |  | 
 | LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl( | 
 |     DenseSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   EventLogger event_logger("DenseNormalCholeskySolver::Solve"); | 
 |  | 
 |   const int num_rows = A->num_rows(); | 
 |   const int num_cols = A->num_cols(); | 
 |  | 
 |   Matrix lhs(num_cols, num_cols); | 
 |   lhs.setZero(); | 
 |  | 
 |   event_logger.AddEvent("Setup"); | 
 |  | 
 |   //   lhs += A'A | 
 |   // | 
 |   // Using rankUpdate instead of GEMM, exposes the fact that its the | 
 |   // same matrix being multiplied with itself and that the product is | 
 |   // symmetric. | 
 |   lhs.selfadjointView<Eigen::Upper>().rankUpdate(A->matrix().transpose()); | 
 |  | 
 |   //   rhs = A'b | 
 |   Vector rhs = A->matrix().transpose() * ConstVectorRef(b, num_rows); | 
 |  | 
 |   if (per_solve_options.D != nullptr) { | 
 |     ConstVectorRef D(per_solve_options.D, num_cols); | 
 |     lhs += D.array().square().matrix().asDiagonal(); | 
 |   } | 
 |   event_logger.AddEvent("Product"); | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = cholesky_->FactorAndSolve( | 
 |       num_cols, lhs.data(), rhs.data(), x, &summary.message); | 
 |   event_logger.AddEvent("FactorAndSolve"); | 
 |  | 
 |   return summary; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |