|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "Eigen/Cholesky" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/context_impl.h" | 
|  | #include "ceres/internal/config.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // TODO(sameeragarwal): These tests needs to be re-written to be more | 
|  | // thorough, they do not really test the dynamic nature of the | 
|  | // sparsity. | 
|  | class DynamicSparseNormalCholeskySolverTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | std::unique_ptr<LinearLeastSquaresProblem> problem = | 
|  | CreateLinearLeastSquaresProblemFromId(1); | 
|  | A_ = CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
|  | *down_cast<TripletSparseMatrix*>(problem->A.get())); | 
|  | b_ = std::move(problem->b); | 
|  | D_ = std::move(problem->D); | 
|  | } | 
|  |  | 
|  | void TestSolver(const LinearSolver::Options& options, double* D) { | 
|  | Matrix dense_A; | 
|  | A_->ToDenseMatrix(&dense_A); | 
|  | Matrix lhs = dense_A.transpose() * dense_A; | 
|  | if (D != nullptr) { | 
|  | lhs += (ConstVectorRef(D, A_->num_cols()).array() * | 
|  | ConstVectorRef(D, A_->num_cols()).array()) | 
|  | .matrix() | 
|  | .asDiagonal(); | 
|  | } | 
|  |  | 
|  | Vector rhs(A_->num_cols()); | 
|  | rhs.setZero(); | 
|  | A_->LeftMultiplyAndAccumulate(b_.get(), rhs.data()); | 
|  | Vector expected_solution = lhs.llt().solve(rhs); | 
|  |  | 
|  | std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
|  | LinearSolver::PerSolveOptions per_solve_options; | 
|  | per_solve_options.D = D; | 
|  | Vector actual_solution(A_->num_cols()); | 
|  | LinearSolver::Summary summary; | 
|  | summary = solver->Solve( | 
|  | A_.get(), b_.get(), per_solve_options, actual_solution.data()); | 
|  |  | 
|  | EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
|  |  | 
|  | for (int i = 0; i < A_->num_cols(); ++i) { | 
|  | EXPECT_NEAR(expected_solution(i), actual_solution(i), 1e-8) | 
|  | << "\nExpected: " << expected_solution.transpose() | 
|  | << "\nActual: " << actual_solution.transpose(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TestSolver( | 
|  | const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
|  | const OrderingType ordering_type) { | 
|  | LinearSolver::Options options; | 
|  | options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.dynamic_sparsity = true; | 
|  | options.sparse_linear_algebra_library_type = | 
|  | sparse_linear_algebra_library_type; | 
|  | options.ordering_type = ordering_type; | 
|  | ContextImpl context; | 
|  | options.context = &context; | 
|  | TestSolver(options, nullptr); | 
|  | TestSolver(options, D_.get()); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CompressedRowSparseMatrix> A_; | 
|  | std::unique_ptr<double[]> b_; | 
|  | std::unique_ptr<double[]> D_; | 
|  | }; | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | TEST_F(DynamicSparseNormalCholeskySolverTest, SuiteSparseAMD) { | 
|  | TestSolver(SUITE_SPARSE, OrderingType::AMD); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_CHOLMOD_PARTITION | 
|  | TEST_F(DynamicSparseNormalCholeskySolverTest, SuiteSparseNESDIS) { | 
|  | TestSolver(SUITE_SPARSE, OrderingType::NESDIS); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CERES_USE_EIGEN_SPARSE | 
|  | TEST_F(DynamicSparseNormalCholeskySolverTest, EigenAMD) { | 
|  | TestSolver(EIGEN_SPARSE, OrderingType::AMD); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_EIGEN_METIS | 
|  | TEST_F(DynamicSparseNormalCholeskySolverTest, EigenNESDIS) { | 
|  | TestSolver(EIGEN_SPARSE, OrderingType::NESDIS); | 
|  | } | 
|  | #endif | 
|  | #endif  // CERES_USE_EIGEN_SPARSE | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |