Armijo line search.
An interface for line search and an initial implementation of
Armijo line search with and without interpolation.
Change-Id: I234da141be36172819a6df87ce5625aa8b58ed47
diff --git a/internal/ceres/line_search.cc b/internal/ceres/line_search.cc
new file mode 100644
index 0000000..fbb75a0
--- /dev/null
+++ b/internal/ceres/line_search.cc
@@ -0,0 +1,201 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/line_search.h"
+
+#include <glog/logging.h>
+#include "ceres/fpclassify.h"
+#include "ceres/evaluator.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/polynomial.h"
+
+
+namespace ceres {
+namespace internal {
+namespace {
+
+FunctionSample ValueSample(const double x, const double value) {
+ FunctionSample sample;
+ sample.x = x;
+ sample.value = value;
+ sample.value_is_valid = true;
+ return sample;
+};
+
+FunctionSample ValueAndGradientSample(const double x,
+ const double value,
+ const double gradient) {
+ FunctionSample sample;
+ sample.x = x;
+ sample.value = value;
+ sample.gradient = gradient;
+ sample.value_is_valid = true;
+ sample.gradient_is_valid = true;
+ return sample;
+};
+
+} // namespace
+
+LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
+ : evaluator_(evaluator),
+ position_(evaluator->NumParameters()),
+ direction_(evaluator->NumEffectiveParameters()),
+ evaluation_point_(evaluator->NumParameters()),
+ scaled_direction_(evaluator->NumEffectiveParameters()),
+ gradient_(evaluator->NumEffectiveParameters()) {
+}
+
+void LineSearchFunction::Init(const Vector& position,
+ const Vector& direction) {
+ position_ = position;
+ direction_ = direction;
+}
+
+bool LineSearchFunction::Evaluate(const double x, double* f, double* g) {
+ scaled_direction_ = x * direction_;
+ if (evaluator_->Plus(position_.data(),
+ scaled_direction_.data(),
+ evaluation_point_.data()) &&
+ evaluator_->Evaluate(evaluation_point_.data(),
+ f,
+ NULL,
+ gradient_.data(), NULL)) {
+ *g = direction_.dot(gradient_);
+ return IsFinite(*f) && IsFinite(*g);
+ }
+ return false;
+}
+
+void ArmijoLineSearch::Search(const LineSearch::Options& options,
+ double initial_step_size,
+ Summary* summary) {
+ *CHECK_NOTNULL(summary) = LineSearch::Summary();
+ Function* function = options.function;
+ double initial_cost = 0.0;
+ double initial_gradient = 0.0;
+ summary->num_evaluations = 1;
+ if (!function->Evaluate(0.0, &initial_cost, &initial_gradient)) {
+ LOG(WARNING) << "Line search failed. "
+ << "Evaluation at the initial point failed.";
+ return;
+ }
+
+ double previous_step_size = 0.0;
+ double previous_cost = 0.0;
+ double previous_gradient = 0.0;
+ bool previous_step_size_is_valid = false;
+
+ double step_size = initial_step_size;
+ double cost = 0.0;
+ double gradient = 0.0;
+ bool step_size_is_valid = false;
+
+ ++summary->num_evaluations;
+ step_size_is_valid = function->Evaluate(step_size, &cost, &gradient);
+ while (!step_size_is_valid || cost > (initial_cost
+ + options.sufficient_decrease
+ * initial_gradient
+ * step_size)) {
+ // If step_size_is_valid is not true we treat it as if the cost at
+ // that point is not large enough to satisfy the sufficient
+ // decrease condition.
+
+ const double current_step_size = step_size;
+ // Backtracking search. Each iteration of this loop finds a new point
+
+ if ((options.interpolation_degree == 0) || !step_size_is_valid) {
+ // Backtrack by halving the step_size;
+ step_size *= 0.5;
+ } else {
+ // Backtrack by interpolating the function and gradient values
+ // and minimizing the corresponding polynomial.
+
+ vector<FunctionSample> samples;
+ samples.push_back(ValueAndGradientSample(0.0,
+ initial_cost,
+ initial_gradient));
+
+ if (options.interpolation_degree == 1) {
+ // Two point interpolation using function values and the
+ // initial gradient.
+ samples.push_back(ValueSample(step_size, cost));
+
+ if (options.use_higher_degree_interpolation_when_possible &&
+ summary->num_evaluations > 2 &&
+ previous_step_size_is_valid) {
+ // Three point interpolation, using function values and the
+ // initial gradient.
+ samples.push_back(ValueSample(previous_step_size, previous_cost));
+ }
+ } else {
+ // Two point interpolation using the function values and the gradients.
+ samples.push_back(ValueAndGradientSample(step_size,
+ cost,
+ gradient));
+
+ if (options.use_higher_degree_interpolation_when_possible &&
+ summary->num_evaluations > 2 &&
+ previous_step_size_is_valid) {
+ // Three point interpolation using the function values and
+ // the gradients.
+ samples.push_back(ValueAndGradientSample(previous_step_size,
+ previous_cost,
+ previous_gradient));
+ }
+ }
+
+ double min_value;
+ MinimizeInterpolatingPolynomial(samples, 0.0, current_step_size,
+ &step_size, &min_value);
+ step_size =
+ min(max(step_size,
+ options.min_relative_step_size_change * current_step_size),
+ options.max_relative_step_size_change * current_step_size);
+ }
+
+ previous_step_size = current_step_size;
+ previous_cost = cost;
+ previous_gradient = gradient;
+
+ if (fabs(initial_gradient) * step_size < options.step_size_threshold) {
+ LOG(WARNING) << "Line search failed: step_size too small: " << step_size;
+ return;
+ }
+
+ ++summary->num_evaluations;
+ step_size_is_valid = function->Evaluate(step_size, &cost, &gradient);
+ }
+
+ summary->optimal_step_size = step_size;
+ summary->success = true;
+}
+
+} // namespace internal
+} // namespace ceres