Change NumericDiffCostFunction to accept variadic functors.

The interface for NumericDiffCostFunction and AutoDiffCostFunction
are not comparable. They both accept variadic functors.

The change is backward compatible, as it still supports numeric
differentiation of CostFunction objects.

Some refactoring of documentation and code in auto_diff_cost_function
and its relatives was also done to make things consistent.

Change-Id: Ib5f230a1d4a85738eb187803b9c1cd7166bb3b92
diff --git a/include/ceres/numeric_diff_cost_function.h b/include/ceres/numeric_diff_cost_function.h
index 8544e44..54ba26f 100644
--- a/include/ceres/numeric_diff_cost_function.h
+++ b/include/ceres/numeric_diff_cost_function.h
@@ -27,19 +27,109 @@
 // POSSIBILITY OF SUCH DAMAGE.
 //
 // Author: keir@google.com (Keir Mierle)
+//         sameeragarwal@google.com (Sameer Agarwal)
 //
 // Create CostFunctions as needed by the least squares framework with jacobians
 // computed via numeric (a.k.a. finite) differentiation. For more details see
 // http://en.wikipedia.org/wiki/Numerical_differentiation.
 //
-// To get a numerically differentiated cost function, define a subclass of
-// CostFunction such that the Evaluate() function ignores the jacobian
-// parameter. The numeric differentiation wrapper will fill in the jacobian
-// parameter if nececssary by repeatedly calling the Evaluate() function with
-// small changes to the appropriate parameters, and computing the slope. For
-// performance, the numeric differentiation wrapper class is templated on the
-// concrete cost function, even though it could be implemented only in terms of
-// the virtual CostFunction interface.
+// To get an numerically differentiated cost function, you must define
+// a class with a operator() (a functor) that computes the residuals.
+//
+// The function must write the computed value in the last argument (the only
+// non-const one) and return true to indicate success.
+//
+// For example, consider a scalar error e = k - x'y, where both x and y are
+// two-dimensional column vector parameters, the prime sign indicates
+// transposition, and k is a constant. The form of this error, which is the
+// difference between a constant and an expression, is a common pattern in least
+// squares problems. For example, the value x'y might be the model expectation
+// for a series of measurements, where there is an instance of the cost function
+// for each measurement k.
+//
+// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
+// the squaring is implicitly done by the optimization framework.
+//
+// To write an numerically-differentiable cost function for the above model, first
+// define the object
+//
+//   class MyScalarCostFunctor {
+//     MyScalarCostFunctor(double k): k_(k) {}
+//
+//     bool operator()(const double* const x,
+//                     const double* const y,
+//                     double* residuals) const {
+//       residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
+//       return true;
+//     }
+//
+//    private:
+//     double k_;
+//   };
+//
+// Note that in the declaration of operator() the input parameters x
+// and y come first, and are passed as const pointers to arrays of
+// doubles. If there were three input parameters, then the third input
+// parameter would come after y. The output is always the last
+// parameter, and is also a pointer to an array. In the example above,
+// the residual is a scalar, so only residuals[0] is set.
+//
+// Then given this class definition, the numerically differentiated
+// cost function with central differences used for computing the
+// derivative can be constructed as follows.
+//
+//   CostFunction* cost_function
+//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
+//           new MyScalarCostFunctor(1.0));                          ^  ^  ^
+//                                                               |   |  |  |
+//                                   Finite Differencing Scheme -+   |  |  |
+//                                   Dimension of residual ----------+  |  |
+//                                   Dimension of x --------------------+  |
+//                                   Dimension of y -----------------------+
+//
+// In this example, there is usually an instance for each measumerent of k.
+//
+// In the instantiation above, the template parameters following
+// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing
+// a 1-dimensional output from two arguments, both 2-dimensional.
+//
+// The framework can currently accommodate cost functions of up to 10
+// independent variables, and there is no limit on the dimensionality
+// of each of them.
+//
+// The central difference method is considerably more accurate at the cost of
+// twice as many function evaluations than forward difference. Consider using
+// central differences begin with, and only after that works, trying forward
+// difference to improve performance.
+//
+// TODO(sameeragarwal): Add support for dynamic number of residuals.
+//
+// WARNING #1: A common beginner's error when first using
+// NumericDiffCostFunction is to get the sizing wrong. In particular,
+// there is a tendency to set the template parameters to (dimension of
+// residual, number of parameters) instead of passing a dimension
+// parameter for *every parameter*. In the example above, that would
+// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'
+// argument. Please be careful when setting the size parameters.
+//
+////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////
+//
+// ALTERNATE INTERFACE
+//
+// For a variety of reason, including compatibility with legacy code,
+// NumericDiffCostFunction can also take CostFunction objects as
+// input. The following describes how.
+//
+// To get a numerically differentiated cost function, define a
+// subclass of CostFunction such that the Evaluate() function ignores
+// the jacobian parameter. The numeric differentiation wrapper will
+// fill in the jacobian parameter if nececssary by repeatedly calling
+// the Evaluate() function with small changes to the appropriate
+// parameters, and computing the slope. For performance, the numeric
+// differentiation wrapper class is templated on the concrete cost
+// function, even though it could be implemented only in terms of the
+// virtual CostFunction interface.
 //
 // The numerically differentiated version of a cost function for a cost function
 // can be constructed as follows:
@@ -51,233 +141,151 @@
 // where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
 // respectively. Look at the tests for a more detailed example.
 //
-// The central difference method is considerably more accurate at the cost of
-// twice as many function evaluations than forward difference. Consider using
-// central differences begin with, and only after that works, trying forward
-// difference to improve performance.
-//
 // TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
 
 #ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 #define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
 
-#include <cstring>
 #include <glog/logging.h>
 #include "Eigen/Dense"
+#include "ceres/cost_function.h"
+#include "ceres/internal/numeric_diff.h"
 #include "ceres/internal/scoped_ptr.h"
 #include "ceres/sized_cost_function.h"
 #include "ceres/types.h"
 
 namespace ceres {
 
-enum NumericDiffMethod {
-  CENTRAL,
-  FORWARD
-};
-
-// This is split from the main class because C++ doesn't allow partial template
-// specializations for member functions. The alternative is to repeat the main
-// class for differing numbers of parameters, which is also unfortunate.
-template <typename CostFunctionNoJacobian,
-          int num_residuals,
-          int parameter_block_size,
-          int parameter_block,
-          NumericDiffMethod method>
-struct Differencer {
-  // Mutates parameters but must restore them before return.
-  static bool EvaluateJacobianForParameterBlock(
-      const CostFunctionNoJacobian *function,
-      double const* residuals_at_eval_point,
-      double **parameters,
-      double **jacobians) {
-    using Eigen::Map;
-    using Eigen::Matrix;
-    using Eigen::RowMajor;
-    using Eigen::ColMajor;
-
-    typedef Matrix<double, num_residuals, 1> ResidualVector;
-    typedef Matrix<double, parameter_block_size, 1> ParameterVector;
-    typedef Matrix<double, num_residuals, parameter_block_size,
-                   (parameter_block_size == 1 &&
-                    num_residuals > 1) ? ColMajor : RowMajor> JacobianMatrix;
-
-    Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
-                                           num_residuals,
-                                           parameter_block_size);
-
-    // Mutate 1 element at a time and then restore.
-    Map<ParameterVector> x_plus_delta(parameters[parameter_block],
-                                      parameter_block_size);
-    ParameterVector x(x_plus_delta);
-
-    // TODO(keir): Pick a smarter number! In theory a good choice is sqrt(eps) *
-    // x, which for doubles means about 1e-8 * x. However, I have found this
-    // number too optimistic. This number should be exposed for users to change.
-    const double kRelativeStepSize = 1e-6;
-
-    ParameterVector step_size = x.array().abs() * kRelativeStepSize;
-
-    // To handle cases where a parameter is exactly zero, instead use the mean
-    // step_size for the other dimensions.
-    double fallback_step_size = step_size.sum() / step_size.rows();
-    if (fallback_step_size == 0.0) {
-      // If all the parameters are zero, there's no good answer. Take
-      // kRelativeStepSize as a guess and hope for the best.
-      fallback_step_size = kRelativeStepSize;
-    }
-
-    // For each parameter in the parameter block, use finite differences to
-    // compute the derivative for that parameter.
-    for (int j = 0; j < parameter_block_size; ++j) {
-      if (step_size(j) == 0.0) {
-        // The parameter is exactly zero, so compromise and use the mean
-        // step_size from the other parameters. This can break in many cases,
-        // but it's hard to pick a good number without problem specific
-        // knowledge.
-        step_size(j) = fallback_step_size;
-      }
-      x_plus_delta(j) = x(j) + step_size(j);
-
-      double residuals[num_residuals];  // NOLINT
-      if (!function->Evaluate(parameters, residuals, NULL)) {
-        // Something went wrong; bail.
-        return false;
-      }
-
-      // Compute this column of the jacobian in 3 steps:
-      // 1. Store residuals for the forward part.
-      // 2. Subtract residuals for the backward (or 0) part.
-      // 3. Divide out the run.
-      parameter_jacobian.col(j) =
-          Map<const ResidualVector>(residuals, num_residuals);
-
-      double one_over_h = 1 / step_size(j);
-      if (method == CENTRAL) {
-        // Compute the function on the other side of x(j).
-        x_plus_delta(j) = x(j) - step_size(j);
-
-        if (!function->Evaluate(parameters, residuals, NULL)) {
-          // Something went wrong; bail.
-          return false;
-        }
-        parameter_jacobian.col(j) -=
-            Map<ResidualVector>(residuals, num_residuals, 1);
-        one_over_h /= 2;
-      } else {
-        // Forward difference only; reuse existing residuals evaluation.
-        parameter_jacobian.col(j) -=
-            Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
-      }
-      x_plus_delta(j) = x(j);  // Restore x_plus_delta.
-
-      // Divide out the run to get slope.
-      parameter_jacobian.col(j) *= one_over_h;
-    }
-    return true;
-  }
-};
-
-// Prevent invalid instantiations.
-template <typename CostFunctionNoJacobian,
-          int num_residuals,
-          int parameter_block,
-          NumericDiffMethod method>
-struct Differencer<CostFunctionNoJacobian,
-                  num_residuals,
-                  0 /* parameter_block_size */,
-                  parameter_block,
-                  method> {
-  static bool EvaluateJacobianForParameterBlock(
-      const CostFunctionNoJacobian *function,
-      double const* residuals_at_eval_point,
-      double **parameters,
-      double **jacobians) {
-    LOG(FATAL) << "Shouldn't get here.";
-    return true;
-  }
-};
-
-template <typename CostFunctionNoJacobian,
-         NumericDiffMethod method = CENTRAL, int M = 0,
-         int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>
+template <typename CostFunctor,
+          NumericDiffMethod method = CENTRAL,
+          int kNumResiduals = 0, // Number of residuals, or ceres::DYNAMIC
+          int N0 = 0,   // Number of parameters in block 0.
+          int N1 = 0,   // Number of parameters in block 1.
+          int N2 = 0,   // Number of parameters in block 2.
+          int N3 = 0,   // Number of parameters in block 3.
+          int N4 = 0,   // Number of parameters in block 4.
+          int N5 = 0,   // Number of parameters in block 5.
+          int N6 = 0,   // Number of parameters in block 6.
+          int N7 = 0,   // Number of parameters in block 7.
+          int N8 = 0,   // Number of parameters in block 8.
+          int N9 = 0>   // Number of parameters in block 9.
 class NumericDiffCostFunction
-    : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {
+    : public SizedCostFunction<kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {
  public:
-  NumericDiffCostFunction(CostFunctionNoJacobian* function,
-                          Ownership ownership)
-      : function_(function), ownership_(ownership) {}
+  NumericDiffCostFunction(CostFunctor* functor,
+                          const double relative_step_size = 1e-6)
+      :functor_(functor),
+       ownership_(TAKE_OWNERSHIP),
+       relative_step_size_(relative_step_size) {}
 
-  virtual ~NumericDiffCostFunction() {
+  NumericDiffCostFunction(CostFunctor* functor,
+                          Ownership ownership,
+                          const double relative_step_size = 1e-6)
+      : functor_(functor),
+        ownership_(ownership),
+        relative_step_size_(relative_step_size) {}
+
+  ~NumericDiffCostFunction() {
     if (ownership_ != TAKE_OWNERSHIP) {
-      function_.release();
+      functor_.release();
     }
   }
 
   virtual bool Evaluate(double const* const* parameters,
                         double* residuals,
                         double** jacobians) const {
+    using internal::FixedArray;
+    using internal::NumericDiff;
+
+    const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
+    const int kNumParameterBlocks =
+        (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) +
+        (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0);
+
     // Get the function value (residuals) at the the point to evaluate.
-    bool success = function_->Evaluate(parameters, residuals, NULL);
-    if (!success) {
-      // Something went wrong; ignore the jacobian.
+    if (!internal::EvaluateImpl<CostFunctor,
+                                N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
+                                    functor_.get(),
+                                    parameters,
+                                    residuals,
+                                    functor_.get())) {
       return false;
     }
+
     if (!jacobians) {
-      // Nothing to do; just forward.
       return true;
     }
 
     // Create a copy of the parameters which will get mutated.
-    const int kParametersSize = N0 + N1 + N2 + N3 + N4 + N5;
-    double parameters_copy[kParametersSize];
-    double *parameters_references_copy[6];
-    parameters_references_copy[0] = &parameters_copy[0];
-    parameters_references_copy[1] = &parameters_copy[0] + N0;
-    parameters_references_copy[2] = &parameters_copy[0] + N0 + N1;
-    parameters_references_copy[3] = &parameters_copy[0] + N0 + N1 + N2;
-    parameters_references_copy[4] = &parameters_copy[0] + N0 + N1 + N2 + N3;
-    parameters_references_copy[5] =
-        &parameters_copy[0] + N0 + N1 + N2 + N3 + N4;
+    FixedArray<double> parameters_copy(kNumParameters);
+    FixedArray<double*> parameters_reference_copy(kNumParameterBlocks);
 
-#define COPY_PARAMETER_BLOCK(block) \
-    if (N ## block) memcpy(parameters_references_copy[block], \
-                           parameters[block], \
-                           sizeof(double) * N ## block);  // NOLINT
+    parameters_reference_copy[0] = parameters_copy.get();
+    if (N1) parameters_reference_copy[1] = parameters_reference_copy[0] + N0;
+    if (N2) parameters_reference_copy[2] = parameters_reference_copy[1] + N1;
+    if (N3) parameters_reference_copy[3] = parameters_reference_copy[2] + N2;
+    if (N4) parameters_reference_copy[4] = parameters_reference_copy[3] + N3;
+    if (N5) parameters_reference_copy[5] = parameters_reference_copy[4] + N4;
+    if (N6) parameters_reference_copy[6] = parameters_reference_copy[5] + N5;
+    if (N7) parameters_reference_copy[7] = parameters_reference_copy[6] + N6;
+    if (N7) parameters_reference_copy[8] = parameters_reference_copy[7] + N7;
+    if (N8) parameters_reference_copy[9] = parameters_reference_copy[8] + N8;
+
+#define COPY_PARAMETER_BLOCK(block)                                     \
+  if (N ## block) memcpy(parameters_reference_copy[block],              \
+                         parameters[block],                             \
+                         sizeof(double) * N ## block);  // NOLINT
+
     COPY_PARAMETER_BLOCK(0);
     COPY_PARAMETER_BLOCK(1);
     COPY_PARAMETER_BLOCK(2);
     COPY_PARAMETER_BLOCK(3);
     COPY_PARAMETER_BLOCK(4);
     COPY_PARAMETER_BLOCK(5);
+    COPY_PARAMETER_BLOCK(6);
+    COPY_PARAMETER_BLOCK(7);
+    COPY_PARAMETER_BLOCK(8);
+    COPY_PARAMETER_BLOCK(9);
+
 #undef COPY_PARAMETER_BLOCK
 
-#define EVALUATE_JACOBIAN_FOR_BLOCK(block) \
-    if (N ## block && jacobians[block]) { \
-      if (!Differencer<CostFunctionNoJacobian, /* NOLINT */ \
-                       M, \
-                       N ## block, \
-                       block, \
-                       method>::EvaluateJacobianForParameterBlock( \
-          function_.get(), \
-          residuals, \
-          parameters_references_copy, \
-          jacobians)) { \
-        return false; \
-      } \
+#define EVALUATE_JACOBIAN_FOR_BLOCK(block)                              \
+    if (N ## block && jacobians[block] != NULL) {                       \
+      if (!NumericDiff<CostFunctor,                                     \
+                       method,                                          \
+                       kNumResiduals,                                   \
+                       N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,          \
+                       block,                                           \
+                       N ## block >::EvaluateJacobianForParameterBlock( \
+                           functor_.get(),                              \
+                           residuals,                                   \
+                           relative_step_size_,                         \
+                           parameters_reference_copy.get(),             \
+                           jacobians[block])) {                         \
+        return false;                                                   \
+      }                                                                 \
     }
+
     EVALUATE_JACOBIAN_FOR_BLOCK(0);
     EVALUATE_JACOBIAN_FOR_BLOCK(1);
     EVALUATE_JACOBIAN_FOR_BLOCK(2);
     EVALUATE_JACOBIAN_FOR_BLOCK(3);
     EVALUATE_JACOBIAN_FOR_BLOCK(4);
     EVALUATE_JACOBIAN_FOR_BLOCK(5);
+    EVALUATE_JACOBIAN_FOR_BLOCK(6);
+    EVALUATE_JACOBIAN_FOR_BLOCK(7);
+    EVALUATE_JACOBIAN_FOR_BLOCK(8);
+    EVALUATE_JACOBIAN_FOR_BLOCK(9);
+
 #undef EVALUATE_JACOBIAN_FOR_BLOCK
+
     return true;
   }
 
  private:
-  internal::scoped_ptr<CostFunctionNoJacobian> function_;
+  internal::scoped_ptr<CostFunctor> functor_;
   Ownership ownership_;
+  const double relative_step_size_;
 };
 
 }  // namespace ceres