Add DynamicNumericDiffCostFunction.
This brings the ability to have numerically differentiated
cost functions to be added with its structure decided on
runtime rather than compile time.
And some minor cleanups.
Two things still need to be done.
a. Update the modeling docs.
b. Remove RuntimeNumericDiffCostFunction in ceres::internal
and replace its usage with DynamicNumericDiffCostFunction.
Change-Id: Ib771f093f29236c95a99df31c584d579b8e36615
diff --git a/include/ceres/dynamic_numeric_diff_cost_function.h b/include/ceres/dynamic_numeric_diff_cost_function.h
new file mode 100644
index 0000000..c30e0f1
--- /dev/null
+++ b/include/ceres/dynamic_numeric_diff_cost_function.h
@@ -0,0 +1,240 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: mierle@gmail.com (Keir Mierle)
+// sameeragarwal@google.com (Sameer Agarwal)
+// thadh@gmail.com (Thad Hughes)
+//
+// This numeric diff implementation differs from the one found in
+// numeric_diff_cost_function.h by supporting numericdiff on cost
+// functions with variable numbers of parameters with variable
+// sizes. With the other implementation, all the sizes (both the
+// number of parameter blocks and the size of each block) must be
+// fixed at compile time.
+//
+// The functor API differs slightly from the API for fixed size
+// numeric diff; the expected interface for the cost functors is:
+//
+// struct MyCostFunctor {
+// template<typename T>
+// bool operator()(double const* const* parameters, double* residuals) const {
+// // Use parameters[i] to access the i'th parameter block.
+// }
+// }
+//
+// Since the sizing of the parameters is done at runtime, you must
+// also specify the sizes after creating the
+// DynamicNumericDiffCostFunction. For example:
+//
+// DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function(
+// new MyCostFunctor());
+// cost_function.AddParameterBlock(5);
+// cost_function.AddParameterBlock(10);
+// cost_function.SetNumResiduals(21);
+
+#ifndef CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
+#define CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
+
+#include <cmath>
+#include <numeric>
+#include <vector>
+
+#include "ceres/cost_function.h"
+#include "ceres/internal/scoped_ptr.h"
+#include "ceres/internal/eigen.h"
+#include "glog/logging.h"
+
+namespace ceres {
+
+template <typename CostFunctor, NumericDiffMethod method = CENTRAL>
+class DynamicNumericDiffCostFunction : public CostFunction {
+ public:
+ explicit DynamicNumericDiffCostFunction(CostFunctor* functor,
+ Ownership ownership = TAKE_OWNERSHIP,
+ double relative_step_size = 1e-6)
+ : functor_(functor),
+ ownership_(ownership),
+ relative_step_size_(relative_step_size) {
+ }
+
+ virtual ~DynamicNumericDiffCostFunction() {
+ if (ownership_ != TAKE_OWNERSHIP) {
+ functor_.release();
+ }
+ }
+
+ void AddParameterBlock(int size) {
+ mutable_parameter_block_sizes()->push_back(size);
+ }
+
+ void SetNumResiduals(int num_residuals) {
+ set_num_residuals(num_residuals);
+ }
+
+ virtual bool Evaluate(double const* const* parameters,
+ double* residuals,
+ double** jacobians) const {
+ CHECK_GT(num_residuals(), 0)
+ << "You must call DynamicNumericDiffCostFunction::SetNumResiduals() "
+ << "before DynamicNumericDiffCostFunction::Evaluate().";
+
+ const vector<int16>& block_sizes = parameter_block_sizes();
+ CHECK(!block_sizes.empty())
+ << "You must call DynamicNumericDiffCostFunction::AddParameterBlock() "
+ << "before DynamicNumericDiffCostFunction::Evaluate().";
+
+ bool status = (*functor_)(parameters, residuals);
+ if (jacobians == NULL) {
+ return status;
+ }
+
+ // Create local space for a copy of the parameters which will get mutated.
+ int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
+ vector<double> parameters_copy(parameters_size);
+ vector<double*> parameters_references_copy(block_sizes.size());
+ parameters_references_copy[0] = ¶meters_copy[0];
+ for (int block = 1; block < block_sizes.size(); ++block) {
+ parameters_references_copy[block] = parameters_references_copy[block - 1]
+ + block_sizes[block - 1];
+ }
+
+ // Copy the parameters into the local temp space.
+ for (int block = 0; block < block_sizes.size(); ++block) {
+ memcpy(parameters_references_copy[block],
+ parameters[block],
+ block_sizes[block] * sizeof(*parameters[block]));
+ }
+
+ for (int block = 0; block < block_sizes.size(); ++block) {
+ if (jacobians[block] != NULL &&
+ !EvaluateJacobianForParameterBlock(block_sizes[block],
+ block,
+ relative_step_size_,
+ residuals,
+ ¶meters_references_copy[0],
+ jacobians)) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ private:
+ bool EvaluateJacobianForParameterBlock(const int parameter_block_size,
+ const int parameter_block,
+ const double relative_step_size,
+ double const* residuals_at_eval_point,
+ double** parameters,
+ double** jacobians) const {
+ using Eigen::Map;
+ using Eigen::Matrix;
+ using Eigen::Dynamic;
+ using Eigen::RowMajor;
+
+ typedef Matrix<double, Dynamic, 1> ResidualVector;
+ typedef Matrix<double, Dynamic, 1> ParameterVector;
+ typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix;
+
+ int num_residuals = this->num_residuals();
+
+ Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
+ num_residuals,
+ parameter_block_size);
+
+ // Mutate one element at a time and then restore.
+ Map<ParameterVector> x_plus_delta(parameters[parameter_block],
+ parameter_block_size);
+ ParameterVector x(x_plus_delta);
+ ParameterVector step_size = x.array().abs() * relative_step_size;
+
+ // To handle cases where a paremeter is exactly zero, instead use
+ // the mean step_size for the other dimensions.
+ double fallback_step_size = step_size.sum() / step_size.rows();
+ if (fallback_step_size == 0.0) {
+ // If all the parameters are zero, there's no good answer. Use the given
+ // relative step_size as absolute step_size and hope for the best.
+ fallback_step_size = relative_step_size;
+ }
+
+ // For each parameter in the parameter block, use finite
+ // differences to compute the derivative for that parameter.
+ for (int j = 0; j < parameter_block_size; ++j) {
+ if (step_size(j) == 0.0) {
+ // The parameter is exactly zero, so compromise and use the
+ // mean step_size from the other parameters. This can break in
+ // many cases, but it's hard to pick a good number without
+ // problem specific knowledge.
+ step_size(j) = fallback_step_size;
+ }
+ x_plus_delta(j) = x(j) + step_size(j);
+
+ ResidualVector residuals(num_residuals);
+ if (!(*functor_)(parameters, &residuals[0])) {
+ // Something went wrong; bail.
+ return false;
+ }
+
+ // Compute this column of the jacobian in 3 steps:
+ // 1. Store residuals for the forward part.
+ // 2. Subtract residuals for the backward (or 0) part.
+ // 3. Divide out the run.
+ parameter_jacobian.col(j) = residuals;
+
+ double one_over_h = 1 / step_size(j);
+ if (method == CENTRAL) {
+ // Compute the function on the other side of x(j).
+ x_plus_delta(j) = x(j) - step_size(j);
+
+ if (!(*functor_)(parameters, &residuals[0])) {
+ // Something went wrong; bail.
+ return false;
+ }
+
+ parameter_jacobian.col(j) -= residuals;
+ one_over_h /= 2;
+ } else {
+ // Forward difference only; reuse existing residuals evaluation.
+ parameter_jacobian.col(j) -=
+ Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
+ }
+ x_plus_delta(j) = x(j); // Restore x_plus_delta.
+
+ // Divide out the run to get slope.
+ parameter_jacobian.col(j) *= one_over_h;
+ }
+ return true;
+ }
+
+ internal::scoped_ptr<CostFunctor> functor_;
+ Ownership ownership_;
+ const double relative_step_size_;
+};
+
+} // namespace ceres
+
+#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_