Add an example for EvaluationCallback
Change-Id: Ia488f8b181118c8d07861149c4bd52f7217336ce
diff --git a/docs/source/nnls_modeling.rst b/docs/source/nnls_modeling.rst
index 4b558dd..e393148 100644
--- a/docs/source/nnls_modeling.rst
+++ b/docs/source/nnls_modeling.rst
@@ -2478,7 +2478,10 @@
to use a global shared variable (discouraged; bug-prone). As far
as Ceres is concerned, it is evaluating cost functions like any
other; it just so happens that behind the scenes the cost functions
- reuse pre-computed data to execute faster.
+ reuse pre-computed data to execute faster. See
+ `examples/evaluation_callback_example.cc
+ <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/evaluation_callback_example.cc>`_
+ for an example.
See ``evaluation_callback_test.cc`` for code that explicitly
verifies the preconditions between
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index 3be34a1..8af2077 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -78,6 +78,9 @@
add_executable(iteration_callback_example iteration_callback_example.cc)
target_link_libraries(iteration_callback_example PRIVATE Ceres::ceres)
+add_executable(evaluation_callback_example evaluation_callback_example.cc)
+target_link_libraries(evaluation_callback_example PRIVATE Ceres::ceres)
+
if (GFLAGS)
add_executable(powell powell.cc)
target_link_libraries(powell PRIVATE Ceres::ceres gflags)
diff --git a/examples/evaluation_callback_example.cc b/examples/evaluation_callback_example.cc
new file mode 100644
index 0000000..579fca3
--- /dev/null
+++ b/examples/evaluation_callback_example.cc
@@ -0,0 +1,253 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2023 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+//
+// This example illustrates the use of the EvaluationCallback, which can be used
+// to perform high performance computation of the residual and Jacobians outside
+// Ceres (in this case using Eigen's vectorized code) and then the CostFunctions
+// just copy these computed residuals and Jacobians appropriately and pass them
+// to Ceres Solver.
+//
+// The results of running this example should be identical to the results
+// obtained by running curve_fitting.cc. The only difference between the two
+// examples is how the residuals and Jacobians are computed.
+//
+// The observant reader will note that both here and curve_fitting.cc instead of
+// creating one ResidualBlock for each observation one can just do one
+// ResidualBlock/CostFunction for the entire problem. The reason for keeping one
+// residual per observation is that it is what is needed if and when we need to
+// introduce a loss function which is what we do in robust_curve_fitting.cc
+
+#include "Eigen/Core"
+#include "ceres/ceres.h"
+#include "glog/logging.h"
+
+// Data generated using the following octave code.
+// randn('seed', 23497);
+// m = 0.3;
+// c = 0.1;
+// x=[0:0.075:5];
+// y = exp(m * x + c);
+// noise = randn(size(x)) * 0.2;
+// y_observed = y + noise;
+// data = [x', y_observed'];
+
+const int kNumObservations = 67;
+// clang-format off
+const double data[] = {
+ 0.000000e+00, 1.133898e+00,
+ 7.500000e-02, 1.334902e+00,
+ 1.500000e-01, 1.213546e+00,
+ 2.250000e-01, 1.252016e+00,
+ 3.000000e-01, 1.392265e+00,
+ 3.750000e-01, 1.314458e+00,
+ 4.500000e-01, 1.472541e+00,
+ 5.250000e-01, 1.536218e+00,
+ 6.000000e-01, 1.355679e+00,
+ 6.750000e-01, 1.463566e+00,
+ 7.500000e-01, 1.490201e+00,
+ 8.250000e-01, 1.658699e+00,
+ 9.000000e-01, 1.067574e+00,
+ 9.750000e-01, 1.464629e+00,
+ 1.050000e+00, 1.402653e+00,
+ 1.125000e+00, 1.713141e+00,
+ 1.200000e+00, 1.527021e+00,
+ 1.275000e+00, 1.702632e+00,
+ 1.350000e+00, 1.423899e+00,
+ 1.425000e+00, 1.543078e+00,
+ 1.500000e+00, 1.664015e+00,
+ 1.575000e+00, 1.732484e+00,
+ 1.650000e+00, 1.543296e+00,
+ 1.725000e+00, 1.959523e+00,
+ 1.800000e+00, 1.685132e+00,
+ 1.875000e+00, 1.951791e+00,
+ 1.950000e+00, 2.095346e+00,
+ 2.025000e+00, 2.361460e+00,
+ 2.100000e+00, 2.169119e+00,
+ 2.175000e+00, 2.061745e+00,
+ 2.250000e+00, 2.178641e+00,
+ 2.325000e+00, 2.104346e+00,
+ 2.400000e+00, 2.584470e+00,
+ 2.475000e+00, 1.914158e+00,
+ 2.550000e+00, 2.368375e+00,
+ 2.625000e+00, 2.686125e+00,
+ 2.700000e+00, 2.712395e+00,
+ 2.775000e+00, 2.499511e+00,
+ 2.850000e+00, 2.558897e+00,
+ 2.925000e+00, 2.309154e+00,
+ 3.000000e+00, 2.869503e+00,
+ 3.075000e+00, 3.116645e+00,
+ 3.150000e+00, 3.094907e+00,
+ 3.225000e+00, 2.471759e+00,
+ 3.300000e+00, 3.017131e+00,
+ 3.375000e+00, 3.232381e+00,
+ 3.450000e+00, 2.944596e+00,
+ 3.525000e+00, 3.385343e+00,
+ 3.600000e+00, 3.199826e+00,
+ 3.675000e+00, 3.423039e+00,
+ 3.750000e+00, 3.621552e+00,
+ 3.825000e+00, 3.559255e+00,
+ 3.900000e+00, 3.530713e+00,
+ 3.975000e+00, 3.561766e+00,
+ 4.050000e+00, 3.544574e+00,
+ 4.125000e+00, 3.867945e+00,
+ 4.200000e+00, 4.049776e+00,
+ 4.275000e+00, 3.885601e+00,
+ 4.350000e+00, 4.110505e+00,
+ 4.425000e+00, 4.345320e+00,
+ 4.500000e+00, 4.161241e+00,
+ 4.575000e+00, 4.363407e+00,
+ 4.650000e+00, 4.161576e+00,
+ 4.725000e+00, 4.619728e+00,
+ 4.800000e+00, 4.737410e+00,
+ 4.875000e+00, 4.727863e+00,
+ 4.950000e+00, 4.669206e+00,
+};
+// clang-format on
+
+// This implementation of the EvaluationCallback interface also stores the
+// residuals and Jacobians that the CostFunction copies their values from.
+class MyEvaluationCallback : public ceres::EvaluationCallback {
+ public:
+ MyEvaluationCallback(const double& m, const double& c) : m_(m), c_(c) {
+ x_ = Eigen::VectorXd::Zero(kNumObservations);
+ y_ = Eigen::VectorXd::Zero(kNumObservations);
+ residuals_ = Eigen::VectorXd::Zero(kNumObservations);
+ jacobians_ = Eigen::MatrixXd::Zero(kNumObservations, 2);
+ for (int i = 0; i < kNumObservations; ++i) {
+ x_[i] = data[2 * i];
+ y_[i] = data[2 * i + 1];
+ }
+ PrepareForEvaluation(true, true);
+ }
+
+ void PrepareForEvaluation(bool evaluate_jacobians,
+ bool new_evaluation_point) final {
+ if (new_evaluation_point) {
+ ComputeResidualAndJacobian(evaluate_jacobians);
+ jacobians_are_stale_ = !evaluate_jacobians;
+ } else {
+ if (evaluate_jacobians && jacobians_are_stale_) {
+ ComputeResidualAndJacobian(evaluate_jacobians);
+ jacobians_are_stale_ = false;
+ }
+ }
+ }
+
+ const Eigen::VectorXd& residuals() const { return residuals_; }
+ const Eigen::MatrixXd& jacobians() const { return jacobians_; }
+ bool jacobians_are_stale() const { return jacobians_are_stale_; }
+
+ private:
+ void ComputeResidualAndJacobian(bool evaluate_jacobians) {
+ residuals_ = -(m_ * x_.array() + c_).exp();
+ if (evaluate_jacobians) {
+ jacobians_.col(0) = residuals_.array() * x_.array();
+ jacobians_.col(1) = residuals_;
+ }
+ residuals_ += y_;
+ }
+
+ const double& m_;
+ const double& c_;
+ Eigen::VectorXd x_;
+ Eigen::VectorXd y_;
+ Eigen::VectorXd residuals_;
+ Eigen::MatrixXd jacobians_;
+
+ // jacobians_are_stale_ keeps track of whether the jacobian matrix matches the
+ // residuals or not, we only compute it if we know that Solver is going to
+ // need access to it.
+ bool jacobians_are_stale_ = true;
+};
+
+// As the name implies this CostFunction does not do any computation, it just
+// copies the appropriate residual and Jacobian from the matrices stored in
+// MyEvaluationCallback.
+class CostAndJacobianCopyingCostFunction
+ : public ceres::SizedCostFunction<1, 1, 1> {
+ public:
+ CostAndJacobianCopyingCostFunction(
+ int index, const MyEvaluationCallback& evaluation_callback)
+ : index_(index), evaluation_callback_(evaluation_callback) {}
+ ~CostAndJacobianCopyingCostFunction() = default;
+
+ bool Evaluate(double const* const* parameters,
+ double* residuals,
+ double** jacobians) const final {
+ residuals[0] = evaluation_callback_.residuals()(index_);
+ if (!jacobians) return true;
+
+ // Ensure that we are not using stale Jacobians.
+ CHECK(!evaluation_callback_.jacobians_are_stale());
+
+ if (jacobians[0] != nullptr)
+ jacobians[0][0] = evaluation_callback_.jacobians()(index_, 0);
+ if (jacobians[1] != nullptr)
+ jacobians[1][0] = evaluation_callback_.jacobians()(index_, 1);
+ return true;
+ }
+
+ private:
+ int index_ = -1;
+ const MyEvaluationCallback& evaluation_callback_;
+};
+
+int main(int argc, char** argv) {
+ google::InitGoogleLogging(argv[0]);
+
+ const double initial_m = 0.0;
+ const double initial_c = 0.0;
+ double m = initial_m;
+ double c = initial_c;
+
+ MyEvaluationCallback evaluation_callback(m, c);
+ ceres::Problem::Options problem_options;
+ problem_options.evaluation_callback = &evaluation_callback;
+ ceres::Problem problem(problem_options);
+ for (int i = 0; i < kNumObservations; ++i) {
+ problem.AddResidualBlock(
+ new CostAndJacobianCopyingCostFunction(i, evaluation_callback),
+ nullptr,
+ &m,
+ &c);
+ }
+
+ ceres::Solver::Options options;
+ options.max_num_iterations = 25;
+ options.linear_solver_type = ceres::DENSE_QR;
+ options.minimizer_progress_to_stdout = true;
+
+ ceres::Solver::Summary summary;
+ ceres::Solve(options, &problem, &summary);
+ std::cout << summary.BriefReport() << "\n";
+ std::cout << "Initial m: " << initial_m << " c: " << initial_c << "\n";
+ std::cout << "Final m: " << m << " c: " << c << "\n";
+ return 0;
+}
diff --git a/include/ceres/evaluation_callback.h b/include/ceres/evaluation_callback.h
index 81fe29d..e582dc8 100644
--- a/include/ceres/evaluation_callback.h
+++ b/include/ceres/evaluation_callback.h
@@ -66,8 +66,12 @@
// Called before Ceres requests residuals or jacobians for a given setting of
// the parameters. User parameters (the double* values provided to the cost
- // functions) are fixed until the next call to PrepareForEvaluation(). If
- // new_evaluation_point == true, then this is a new point that is different
+ // functions) are fixed until the next call to PrepareForEvaluation().
+ //
+ // If evaluate_jacobians == true, then the user provided CostFunctions will be
+ // asked to evaluate one or more of their Jacobians.
+ //
+ // If new_evaluation_point == true, then this is a new point that is different
// from the last evaluated point. Otherwise, it is the same point that was
// evaluated previously (either jacobian or residual) and the user can use
// cached results from previous evaluations.