Problem::Evaluate implementation.
1. Add Problem::Evaluate and tests.
2. Remove Solver::Summary::initial/final_*
3. Remove Solver::Options::return_* members.
4. Various cpplint cleanups.
Change-Id: I4266de53489896f72d9c6798c5efde6748d68a47
diff --git a/internal/ceres/dogleg_strategy.cc b/internal/ceres/dogleg_strategy.cc
index da861fe..a330ad2 100644
--- a/internal/ceres/dogleg_strategy.cc
+++ b/internal/ceres/dogleg_strategy.cc
@@ -87,7 +87,7 @@
// Gauss-Newton and gradient vectors are always available, only a
// new interpolant need to be computed. For the subspace case,
// the subspace and the two-dimensional model are also still valid.
- switch(dogleg_type_) {
+ switch (dogleg_type_) {
case TRADITIONAL_DOGLEG:
ComputeTraditionalDoglegStep(step);
break;
@@ -135,7 +135,7 @@
summary.termination_type = linear_solver_summary.termination_type;
if (linear_solver_summary.termination_type != FAILURE) {
- switch(dogleg_type_) {
+ switch (dogleg_type_) {
// Interpolate the Cauchy point and the Gauss-Newton step.
case TRADITIONAL_DOGLEG:
ComputeTraditionalDoglegStep(step);
@@ -415,15 +415,15 @@
const double trB = subspace_B_.trace();
const double r2 = radius_ * radius_;
Matrix2d B_adj;
- B_adj << subspace_B_(1,1) , -subspace_B_(0,1),
- -subspace_B_(1,0) , subspace_B_(0,0);
+ B_adj << subspace_B_(1, 1) , -subspace_B_(0, 1),
+ -subspace_B_(1, 0) , subspace_B_(0, 0);
Vector polynomial(5);
polynomial(0) = r2;
polynomial(1) = 2.0 * r2 * trB;
- polynomial(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
- polynomial(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
- - r2 * detB * trB );
+ polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
+ polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_
+ - r2 * detB * trB);
polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
return polynomial;
@@ -598,7 +598,7 @@
// Reduce the regularization multiplier, in the hope that whatever
// was causing the rank deficiency has gone away and we can return
// to doing a pure Gauss-Newton solve.
- mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ );
+ mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
reuse_ = false;
}