Removing using std::...
Change-Id: I584402e2a34869183c1d59071a15d97b216c52fb
diff --git a/internal/ceres/rotation_test.cc b/internal/ceres/rotation_test.cc
index 577f8ed..b59c487 100644
--- a/internal/ceres/rotation_test.cc
+++ b/internal/ceres/rotation_test.cc
@@ -50,17 +50,11 @@
namespace ceres {
namespace internal {
-using std::max;
-using std::min;
-using std::numeric_limits;
-using std::string;
-using std::swap;
-
inline constexpr double kPi = constants::pi_v<double>;
const double kHalfSqrt2 = 0.707106781186547524401;
// A tolerance value for floating-point comparisons.
-static double const kTolerance = numeric_limits<double>::epsilon() * 10;
+static double const kTolerance = std::numeric_limits<double>::epsilon() * 10;
// Looser tolerance used for numerically unstable conversions.
static double const kLooseTolerance = 1e-9;
@@ -136,12 +130,12 @@
Eigen::Vector3d e(expected[0], expected[1], expected[2]);
const double e_norm = e.norm();
- double delta_norm = numeric_limits<double>::max();
+ double delta_norm = std::numeric_limits<double>::max();
if (e_norm > 0) {
// Deal with the sign ambiguity near PI. Since the sign can flip,
// we take the smaller of the two differences.
if (fabs(e_norm - kPi) < kLooseTolerance) {
- delta_norm = min((a - e).norm(), (a + e).norm()) / e_norm;
+ delta_norm = std::min((a - e).norm(), (a + e).norm()) / e_norm;
} else {
delta_norm = (a - e).norm() / e_norm;
}
@@ -229,7 +223,7 @@
// Test that approximate conversion works for very small angles.
TEST(Rotation, TinyAngleAxisToQuaternion) {
// Very small value that could potentially cause underflow.
- double theta = pow(numeric_limits<double>::min(), 0.75);
+ double theta = pow(std::numeric_limits<double>::min(), 0.75);
double axis_angle[3] = {theta, 0, 0};
double quaternion[4];
double expected[4] = {cos(theta / 2), sin(theta / 2.0), 0, 0};
@@ -290,7 +284,7 @@
// Test that approximate conversion works for very small angles.
TEST(Rotation, TinyQuaternionToAngleAxis) {
// Very small value that could potentially cause underflow.
- double theta = pow(numeric_limits<double>::min(), 0.75);
+ double theta = pow(std::numeric_limits<double>::min(), 0.75);
double quaternion[4] = {cos(theta / 2), sin(theta / 2.0), 0, 0};
double axis_angle[3];
double expected[3] = {theta, 0, 0};
@@ -496,7 +490,7 @@
LOG(INFO) << "Rotation:";
LOG(INFO) << "EXPECTED | ACTUAL";
for (int i = 0; i < 3; ++i) {
- string line;
+ std::string line;
for (int j = 0; j < 3; ++j) {
StringAppendF(&line, "%g ", kMatrix[i][j]);
}
@@ -600,16 +594,16 @@
for (int i = 0; i < 3; ++i) {
EXPECT_NEAR(
- round_trip[i], axis_angle[i], numeric_limits<double>::epsilon());
+ round_trip[i], axis_angle[i], std::numeric_limits<double>::epsilon());
}
}
}
// Transposes a 3x3 matrix.
static void Transpose3x3(double m[9]) {
- swap(m[1], m[3]);
- swap(m[2], m[6]);
- swap(m[5], m[7]);
+ std::swap(m[1], m[3]);
+ std::swap(m[2], m[6]);
+ std::swap(m[5], m[7]);
}
// Convert Euler angles from radians to degrees.
@@ -976,11 +970,11 @@
// Log-10 of a value well below machine precision.
static const int kSmallTinyCutoff =
- static_cast<int>(2 * log(numeric_limits<double>::epsilon()) / log(10.0));
+ static_cast<int>(2 * log(std::numeric_limits<double>::epsilon()) / log(10.0));
// Log-10 of a value just below values representable by double.
static const int kTinyZeroLimit =
- static_cast<int>(1 + log(numeric_limits<double>::min()) / log(10.0));
+ static_cast<int>(1 + log(std::numeric_limits<double>::min()) / log(10.0));
// Test that exact conversion works for small angles when jets are used.
TEST(Rotation, SmallAngleAxisToQuaternionForJets) {