Covariance estimation using SuiteSparseQR.
Change-Id: I70d1686e3288fdde5f9723e832e15ffb857d6d85
diff --git a/include/ceres/covariance.h b/include/ceres/covariance.h
index b70f98b..83126b5 100644
--- a/include/ceres/covariance.h
+++ b/include/ceres/covariance.h
@@ -200,34 +200,76 @@
public:
struct Options {
Options()
- : num_threads(1),
#ifndef CERES_NO_SUITESPARSE
- use_dense_linear_algebra(false),
+ : algorithm_type(SPARSE_QR),
#else
- use_dense_linear_algebra(true),
+ : algorithm_type(DENSE_SVD),
#endif
min_reciprocal_condition_number(1e-14),
null_space_rank(0),
+ num_threads(1),
apply_loss_function(true) {
}
- // Number of threads to be used for evaluating the Jacobian and
- // estimation of covariance.
- int num_threads;
-
-
- // When use_dense_linear_algebra = true, Eigen's JacobiSVD
- // algorithm is used to perform the computations. It is an
- // accurate but slow method and should only be used for small to
- // moderate sized problems.
+ // Ceres supports three different algorithms for covariance
+ // estimation, which represent different tradeoffs in speed,
+ // accuracy and reliability.
//
- // When use_dense_linear_algebra = false, SuiteSparse/CHOLMOD is
- // used to perform the computation. Recent versions of SuiteSparse
- // (>= 4.2.0) provide a much more efficient method for solving for
- // rows of the covariance matrix. Therefore, if you are doing
- // large scale covariance estimation, we strongly recommend using
- // a recent version of SuiteSparse.
- bool use_dense_linear_algebra;
+ // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
+ // computations. It computes the singular value decomposition
+ //
+ // U * S * V' = J
+ //
+ // and then uses it to compute the pseudo inverse of J'J as
+ //
+ // pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
+ //
+ // It is an accurate but slow method and should only be used
+ // for small to moderate sized problems. It can handle
+ // full-rank as well as rank deficient Jacobians.
+ //
+ // 2. SPARSE_CHOLESKY uses the CHOLMOD sparse Cholesky
+ // factorization library to compute the decomposition :
+ //
+ // R'R = J'J
+ //
+ // and then
+ //
+ // [J'J]^-1 = [R'R]^-1
+ //
+ // It a fast algorithm for sparse matrices that should be used
+ // when the Jacobian matrix J is well conditioned. For
+ // ill-conditioned matrices, this algorithm can fail
+ // unpredictabily. This is because Cholesky factorization is
+ // not a rank-revealing factorization, i.e., it cannot reliably
+ // detect when the matrix being factorized is not of full
+ // rank. SuiteSparse/CHOLMOD supplies a heuristic for checking
+ // if the matrix is rank deficient (cholmod_rcond), but it is
+ // only a heuristic and can have both false positive and false
+ // negatives.
+ //
+ // Recent versions of SuiteSparse (>= 4.2.0) provide a much
+ // more efficient method for solving for rows of the covariance
+ // matrix. Therefore, if you are doing SPARSE_CHOLESKY, we
+ // strongly recommend using a recent version of SuiteSparse.
+ //
+ // 3. SPARSE_QR uses the SuiteSparseQR sparse QR factorization
+ // library to compute the decomposition
+ //
+ // Q * R = J
+ //
+ // [J'J]^-1 = [R*R']^-1
+ //
+ // It is a moderately fast algorithm for sparse matrices, which
+ // at the price of more time and memory than the
+ // SPARSE_CHOLESKY algorithm is numerically better behaved and
+ // is rank revealing, i.e., it can reliably detect when the
+ // Jacobian matrix is rank deficient.
+ //
+ // Neither SPARSE_CHOLESKY or SPARSE_QR are capable of computing
+ // the covariance if the Jacobian is rank deficient.
+
+ CovarianceAlgorithmType algorithm_type;
// If the Jacobian matrix is near singular, then inverting J'J
// will result in unreliable results, e.g, if
@@ -240,48 +282,46 @@
// inv(J'J) = [ 2.0471e+14 -2.0471e+14]
// [-2.0471e+14 2.0471e+14]
//
- // This is not a useful result.
+ // This is not a useful result. Therefore, by default
+ // Covariance::Compute will return false if a rank deficient
+ // Jacobian is encountered. How rank deficiency is detected
+ // depends on the algorithm being used.
//
- // The reciprocal condition number of a matrix is a measure of
- // ill-conditioning or how close the matrix is to being
- // singular/rank deficient. It is defined as the ratio of the
- // smallest eigenvalue of the matrix to the largest eigenvalue. In
- // the above case the reciprocal condition number is about
- // 1e-16. Which is close to machine precision and even though the
- // inverse exists, it is meaningless, and care should be taken to
- // interpet the results of such an inversion.
+ // 1. DENSE_SVD
//
- // Matrices with condition number lower than
- // min_reciprocal_condition_number are considered rank deficient
- // and by default Covariance::Compute will return false if it
- // encounters such a matrix.
+ // min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
//
- // use_dense_linear_algebra = false
- // --------------------------------
+ // where min_sigma and max_sigma are the minimum and maxiumum
+ // singular values of J respectively.
//
- // When performing large scale sparse covariance estimation,
- // computing the exact value of the reciprocal condition number is
- // not possible as it would require computing the eigenvalues of
- // J'J.
+ // 2. SPARSE_CHOLESKY
//
- // In this case we use cholmod_rcond, which uses the ratio of the
- // smallest to the largest diagonal entries of the Cholesky
- // factorization as an approximation to the reciprocal condition
- // number.
+ // cholmod_rcond < min_reciprocal_conditioner_number
//
- // However, care must be taken as this is a heuristic and can
- // sometimes be a very crude estimate. The default value of
- // min_reciprocal_condition_number has been set to a conservative
- // value, and sometimes the Covariance::Compute may return false
- // even if it is possible to estimate the covariance reliably. In
- // such cases, the user should exercise their judgement before
- // lowering the value of min_reciprocal_condition_number.
+ // Here cholmod_rcond is a crude estimate of the reciprocal
+ // condition number of J'J by using the maximum and minimum
+ // diagonal entries of the Cholesky factor R. There are no
+ // theoretical guarantees associated with this test. It can
+ // give false positives and negatives. Use at your own
+ // risk. The default value of min_reciprocal_condition_number
+ // has been set to a conservative value, and sometimes the
+ // Covariance::Compute may return false even if it is possible
+ // to estimate the covariance reliably. In such cases, the user
+ // should exercise their judgement before lowering the value of
+ // min_reciprocal_condition_number.
//
- // use_dense_linear_algebra = true
- // -------------------------------
+ // 3. SPARSE_QR
//
- // When using dense linear algebra, the user has more control in
- // dealing with singular and near singular covariance matrices.
+ // rank(J) < num_col(J)
+ //
+ // Here rank(J) is the estimate of the rank of J returned by the
+ // SuiteSparseQR algorithm. It is a fairly reliable indication
+ // of rank deficiency.
+ //
+ double min_reciprocal_condition_number;
+
+ // When using DENSE_SVD, the user has more control in dealing with
+ // singular and near singular covariance matrices.
//
// As mentioned above, when the covariance matrix is near
// singular, instead of computing the inverse of J'J, the
@@ -311,19 +351,12 @@
//
// lambda_i / lambda_max < min_reciprocal_condition_number.
//
- double min_reciprocal_condition_number;
-
- // Truncate the smallest "null_space_rank" eigenvectors when
- // computing the pseudo inverse of J'J.
- //
- // If null_space_rank = -1, then all eigenvectors with eigenvalues s.t.
- //
- // lambda_i / lambda_max < min_reciprocal_condition_number.
- //
- // are dropped. See the documentation for
- // min_reciprocal_condition_number for more details.
+ // This option has no effect on the SPARSE_CHOLESKY or SPARSE_QR
+ // algorithms.
int null_space_rank;
+ int num_threads;
+
// Even though the residual blocks in the problem may contain loss
// functions, setting apply_loss_function to false will turn off
// the application of the loss function to the output of the cost
diff --git a/include/ceres/types.h b/include/ceres/types.h
index 46c2fd2..a967541 100644
--- a/include/ceres/types.h
+++ b/include/ceres/types.h
@@ -383,6 +383,12 @@
CUBIC
};
+enum CovarianceAlgorithmType {
+ DENSE_SVD,
+ SPARSE_CHOLESKY,
+ SPARSE_QR
+};
+
const char* LinearSolverTypeToString(LinearSolverType type);
bool StringToLinearSolverType(string value, LinearSolverType* type);
@@ -424,6 +430,12 @@
string value,
LineSearchInterpolationType* type);
+const char* CovarianceAlgorithmTypeToString(
+ CovarianceAlgorithmType type);
+bool StringToCovarianceAlgorithmType(
+ string value,
+ CovarianceAlgorithmType* type);
+
const char* LinearSolverTerminationTypeToString(
LinearSolverTerminationType type);