Covariance estimation using SuiteSparseQR.
Change-Id: I70d1686e3288fdde5f9723e832e15ffb857d6d85
diff --git a/internal/ceres/covariance_test.cc b/internal/ceres/covariance_test.cc
index f9c5cd4..e7d25a1 100644
--- a/internal/ceres/covariance_test.cc
+++ b/internal/ceres/covariance_test.cc
@@ -400,11 +400,14 @@
Covariance::Options options;
#ifndef CERES_NO_SUITESPARSE
- options.use_dense_linear_algebra = false;
+ options.algorithm_type = SPARSE_CHOLESKY;
+ ComputeAndCompareCovarianceBlocks(options, expected_covariance);
+
+ options.algorithm_type = SPARSE_QR;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
#endif
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
}
@@ -445,11 +448,14 @@
options.num_threads = 4;
#ifndef CERES_NO_SUITESPARSE
- options.use_dense_linear_algebra = false;
+ options.algorithm_type = SPARSE_CHOLESKY;
+ ComputeAndCompareCovarianceBlocks(options, expected_covariance);
+
+ options.algorithm_type = SPARSE_QR;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
#endif
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
}
@@ -491,11 +497,11 @@
Covariance::Options options;
#ifndef CERES_NO_SUITESPARSE
- options.use_dense_linear_algebra = false;
+ options.algorithm_type = SPARSE_CHOLESKY;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
#endif
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
}
@@ -544,11 +550,11 @@
Covariance::Options options;
#ifndef CERES_NO_SUITESPARSE
- options.use_dense_linear_algebra = false;
+ options.algorithm_type = SPARSE_CHOLESKY;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
#endif
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
}
@@ -589,7 +595,7 @@
{
Covariance::Options options;
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
// Force dropping of the smallest eigenvector.
options.null_space_rank = 1;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
@@ -597,7 +603,7 @@
{
Covariance::Options options;
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
// Force dropping of the smallest eigenvector via the ratio but
// automatic truncation.
options.min_reciprocal_condition_number = 0.044494;
@@ -693,7 +699,7 @@
};
Covariance::Options options;
- options.use_dense_linear_algebra = true;
+ options.algorithm_type = DENSE_SVD;
options.null_space_rank = -1;
ComputeAndCompareCovarianceBlocks(options, expected_covariance);
}
@@ -723,9 +729,10 @@
}
}
- void ComputeAndCompare(int num_threads) {
+ void ComputeAndCompare(CovarianceAlgorithmType algorithm_type,
+ int num_threads) {
Covariance::Options options;
- options.use_dense_linear_algebra = false;
+ options.algorithm_type = algorithm_type;
options.num_threads = num_threads;
Covariance covariance(options);
EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_));
@@ -768,7 +775,7 @@
#if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP)
TEST_F(LargeScaleCovarianceTest, Parallel) {
- ComputeAndCompare(4);
+ ComputeAndCompare(SPARSE_CHOLESKY, 4);
}
#endif // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP)