Fix a reallocation bug in CreateJacobianBlockSparsityTranspose.
CreateJacobianBlockSparsityTranspose starts with a conservative
estimate of the size of the block sparsity pattern of the Jacobian.
When the Jacobian has more non-zeros than that, the TripletSparseMatrix
being used to store the sparsity has a Reallocate method which
allows one to resize the matrix and IF num_nonzeros is set, then the
existing values in the array are also copied into the newly allocated
memory.
Unfortunately the pattern we follow in ceres code is to call
set_num_nonzeros after one is done populating the sparsity pattern
of a matrix. This does not mix well with Reallocate and results
in the matrix having uninitialized memory.
This patch fixes this problem and adds a test that verifies the fix.
Thanks to Yuliy Schwartzburg for reporting this bug and providing
code to reproduce it.
Change-Id: I58583714ffaebd880d85af16e3685b2d6ee053e8
diff --git a/internal/ceres/solver_impl_test.cc b/internal/ceres/solver_impl_test.cc
index e99a3de..7413ca8 100644
--- a/internal/ceres/solver_impl_test.cc
+++ b/internal/ceres/solver_impl_test.cc
@@ -924,5 +924,72 @@
EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0);
}
+template <int kNumResiduals, int kNumParameterBlocks>
+class NumParameterBlocksCostFunction : public CostFunction {
+ public:
+ NumParameterBlocksCostFunction() {
+ set_num_residuals(kNumResiduals);
+ for (int i = 0; i < kNumParameterBlocks; ++i) {
+ mutable_parameter_block_sizes()->push_back(1);
+ }
+ }
+
+ virtual ~NumParameterBlocksCostFunction() {
+ }
+
+ virtual bool Evaluate(double const* const* parameters,
+ double* residuals,
+ double** jacobians) const {
+ return true;
+ }
+};
+
+TEST(SolverImpl, ReallocationInCreateJacobianBlockSparsityTranspose) {
+ // CreateJacobianBlockSparsityTranspose starts with a conservative
+ // estimate of the size of the sparsity pattern. This test ensures
+ // that when those estimates are violated, the reallocation/resizing
+ // logic works correctly.
+
+ ProblemImpl problem;
+ double x[20];
+
+ vector<double*> parameter_blocks;
+ for (int i = 0; i < 20; ++i) {
+ problem.AddParameterBlock(x + i, 1);
+ parameter_blocks.push_back(x + i);
+ }
+
+ problem.AddResidualBlock(new NumParameterBlocksCostFunction<1, 20>(),
+ NULL,
+ parameter_blocks);
+
+ TripletSparseMatrix expected_block_sparse_jacobian(20, 1, 20);
+ {
+ int* rows = expected_block_sparse_jacobian.mutable_rows();
+ int* cols = expected_block_sparse_jacobian.mutable_cols();
+ for (int i = 0; i < 20; ++i) {
+ rows[i] = i;
+ cols[i] = 0;
+ }
+
+ double* values = expected_block_sparse_jacobian.mutable_values();
+ fill(values, values + 20, 1.0);
+ expected_block_sparse_jacobian.set_num_nonzeros(20);
+ }
+
+ Program* program = problem.mutable_program();
+ program->SetParameterOffsetsAndIndex();
+
+ scoped_ptr<TripletSparseMatrix> actual_block_sparse_jacobian(
+ SolverImpl::CreateJacobianBlockSparsityTranspose(program));
+
+ Matrix expected_dense_jacobian;
+ expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian);
+
+ Matrix actual_dense_jacobian;
+ actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian);
+ EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0);
+}
+
} // namespace internal
} // namespace ceres