Lint changes from William Rucklidge. Change-Id: I4c34caa57c48c97df213d6fb44a1a2534a953f0f
diff --git a/docs/source/nnls_modeling.rst b/docs/source/nnls_modeling.rst index 6772efe..37f7c59 100644 --- a/docs/source/nnls_modeling.rst +++ b/docs/source/nnls_modeling.rst
@@ -1152,7 +1152,7 @@ When using homogeneous vectors it is useful to only make updates orthogonal to that :math:`n`-vector defining the homogeneous - vector [HartleyZisserman]_. One way to do this is to let :math:`\Delta x` + vector [HartleyZisserman]_. One way to do this is to let :math:`\Delta x` be a :math:`n-1` dimensional vector and define :math:`\boxplus` to be .. math:: \boxplus(x, \Delta x) = \left[ \frac{\sin\left(0.5 |\Delta x|\right)}{|\Delta x|} \Delta x, \cos(0.5 |\Delta x|) \right] * x @@ -1160,7 +1160,7 @@ The multiplication between the two vectors on the right hand side is defined as an operator which applies the update orthogonal to :math:`x` to remain on the sphere. Note, it is assumed that - last element of :math:`x` is the scalar component of the homogeneous + last element of :math:`x` is the scalar component of the homogeneous vector.
diff --git a/internal/ceres/local_parameterization.cc b/internal/ceres/local_parameterization.cc index aa21e6b..465a365 100644 --- a/internal/ceres/local_parameterization.cc +++ b/internal/ceres/local_parameterization.cc
@@ -222,7 +222,7 @@ // Apply the delta update to remain on the unit sphere. See section A6.9.3 // on page 625 of Hartley & Zisserman (2nd Edition) for a detailed // description. - x_plus_delta = x.norm() * (y - v * (beta *(v.transpose() * y))); + x_plus_delta = x.norm() * (y - v * (beta * (v.transpose() * y))); return true; }