Extend the C API to support loss functions

This extends the C API to support loss functions. Both
user-supplied cost functions as well as the stock Ceres cost
functions (Cauchy, Huber, etc) are supported. In addition, this
adds a simple unit test for the C API.

Supporting loss functions required changing the signature of the
ceres_add_residual_block() function to also take a thunk for the
loss function.

Change-Id: Iefa58cf709adbb8f24588e5eb6aed9aef46b6d73
diff --git a/internal/ceres/CMakeLists.txt b/internal/ceres/CMakeLists.txt
index 3b8b2f0..dfa567c 100644
--- a/internal/ceres/CMakeLists.txt
+++ b/internal/ceres/CMakeLists.txt
@@ -240,6 +240,7 @@
   CERES_TEST(block_random_access_dense_matrix)
   CERES_TEST(block_random_access_sparse_matrix)
   CERES_TEST(block_sparse_matrix)
+  CERES_TEST(c_api)
   CERES_TEST(canonical_views_clustering)
   CERES_TEST(compressed_row_sparse_matrix)
   CERES_TEST(conditioned_cost_function)
diff --git a/internal/ceres/c_api.cc b/internal/ceres/c_api.cc
index 4d7d59b..02bc129 100644
--- a/internal/ceres/c_api.cc
+++ b/internal/ceres/c_api.cc
@@ -32,10 +32,13 @@
 //
 // TODO(keir): Figure out why logging does not seem to work.
 
-#include <vector>
-#include <iostream>  // XXX remove me
 #include "ceres/c_api.h"
+
+#include <vector>
+#include <iostream>
+#include <string>
 #include "ceres/cost_function.h"
+#include "ceres/loss_function.h"
 #include "ceres/problem.h"
 #include "ceres/solver.h"
 #include "ceres/types.h"  // for std
@@ -57,6 +60,8 @@
   delete reinterpret_cast<Problem*>(problem);
 }
 
+// This cost function wraps a C-level function pointer from the user, to bridge
+// between C and C++.
 class CallbackCostFunction : public ceres::CostFunction {
  public:
   CallbackCostFunction(ceres_cost_function_t cost_function,
@@ -88,11 +93,56 @@
   void* user_data_;
 };
 
+// This loss function wraps a C-level function pointer from the user, to bridge
+// between C and C++.
+class CallbackLossFunction : public ceres::LossFunction {
+ public:
+  explicit CallbackLossFunction(ceres_loss_function_t loss_function,
+                                void* user_data)
+    : loss_function_(loss_function), user_data_(user_data) {}
+  virtual void Evaluate(double sq_norm, double* rho) const {
+    (*loss_function_)(user_data_, sq_norm, rho);
+  }
+
+ private:
+  ceres_loss_function_t loss_function_;
+  void* user_data_;
+};
+
+// Wrappers for the stock loss functions.
+void* ceres_create_huber_loss_function_data(double a) {
+  return new ceres::HuberLoss(a);
+}
+void* ceres_create_softl1_loss_function_data(double a) {
+  return new ceres::SoftLOneLoss(a);
+}
+void* ceres_create_cauchy_loss_function_data(double a) {
+  return new ceres::CauchyLoss(a);
+}
+void* ceres_create_arctan_loss_function_data(double a) {
+  return new ceres::ArctanLoss(a);
+}
+void* ceres_create_tolerant_loss_function_data(double a, double b) {
+  return new ceres::TolerantLoss(a, b);
+}
+
+void ceres_free_stock_loss_function_data(void* loss_function_data) {
+  delete reinterpret_cast<ceres::LossFunction*>(loss_function_data);
+}
+
+void ceres_stock_loss_function(void* user_data,
+                               double squared_norm,
+                               double out[3]) {
+  reinterpret_cast<ceres::LossFunction*>(user_data)
+      ->Evaluate(squared_norm, out);
+}
+
 ceres_residual_block_id_t* ceres_problem_add_residual_block(
     ceres_problem_t* problem,
     ceres_cost_function_t cost_function,
+    void* cost_function_data,
     ceres_loss_function_t loss_function,
-    void* user_data,
+    void* loss_function_data,
     int num_residuals,
     int num_parameter_blocks,
     int* parameter_block_sizes,
@@ -101,16 +151,22 @@
 
   ceres::CostFunction* callback_cost_function =
       new CallbackCostFunction(cost_function,
-                               user_data,
+                               cost_function_data,
                                num_residuals,
                                num_parameter_blocks,
                                parameter_block_sizes);
 
+  ceres::LossFunction* callback_loss_function = NULL;
+  if (loss_function != NULL) {
+    callback_loss_function = new CallbackLossFunction(loss_function,
+                                                      loss_function_data);
+  }
+
   std::vector<double*> parameter_blocks(parameters,
                                         parameters + num_parameter_blocks);
   return reinterpret_cast<ceres_residual_block_id_t*>(
       ceres_problem->AddResidualBlock(callback_cost_function,
-                                      NULL, /* Ignore loss for now */
+                                      callback_loss_function,
                                       parameter_blocks));
 }
 
@@ -121,7 +177,7 @@
   // Instead, figure out a way to specify some of the options without
   // duplicating everything.
   ceres::Solver::Options options;
-  options.max_num_iterations = 25;
+  options.max_num_iterations = 100;
   options.linear_solver_type = ceres::DENSE_QR;
   options.minimizer_progress_to_stdout = true;
 
diff --git a/internal/ceres/c_api_test.cc b/internal/ceres/c_api_test.cc
new file mode 100644
index 0000000..c6bfb37
--- /dev/null
+++ b/internal/ceres/c_api_test.cc
@@ -0,0 +1,221 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2013 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: mierle@gmail.com (Keir Mierle)
+
+#include "ceres/c_api.h"
+
+#include <cmath>
+
+#include "glog/logging.h"
+#include "gtest/gtest.h"
+
+// Duplicated from curve_fitting.cc.
+int num_observations = 67;
+double data[] = {
+  0.000000e+00, 1.133898e+00,
+  7.500000e-02, 1.334902e+00,
+  1.500000e-01, 1.213546e+00,
+  2.250000e-01, 1.252016e+00,
+  3.000000e-01, 1.392265e+00,
+  3.750000e-01, 1.314458e+00,
+  4.500000e-01, 1.472541e+00,
+  5.250000e-01, 1.536218e+00,
+  6.000000e-01, 1.355679e+00,
+  6.750000e-01, 1.463566e+00,
+  7.500000e-01, 1.490201e+00,
+  8.250000e-01, 1.658699e+00,
+  9.000000e-01, 1.067574e+00,
+  9.750000e-01, 1.464629e+00,
+  1.050000e+00, 1.402653e+00,
+  1.125000e+00, 1.713141e+00,
+  1.200000e+00, 1.527021e+00,
+  1.275000e+00, 1.702632e+00,
+  1.350000e+00, 1.423899e+00,
+  1.425000e+00, 1.543078e+00,
+  1.500000e+00, 1.664015e+00,
+  1.575000e+00, 1.732484e+00,
+  1.650000e+00, 1.543296e+00,
+  1.725000e+00, 1.959523e+00,
+  1.800000e+00, 1.685132e+00,
+  1.875000e+00, 1.951791e+00,
+  1.950000e+00, 2.095346e+00,
+  2.025000e+00, 2.361460e+00,
+  2.100000e+00, 2.169119e+00,
+  2.175000e+00, 2.061745e+00,
+  2.250000e+00, 2.178641e+00,
+  2.325000e+00, 2.104346e+00,
+  2.400000e+00, 2.584470e+00,
+  2.475000e+00, 1.914158e+00,
+  2.550000e+00, 2.368375e+00,
+  2.625000e+00, 2.686125e+00,
+  2.700000e+00, 2.712395e+00,
+  2.775000e+00, 2.499511e+00,
+  2.850000e+00, 2.558897e+00,
+  2.925000e+00, 2.309154e+00,
+  3.000000e+00, 2.869503e+00,
+  3.075000e+00, 3.116645e+00,
+  3.150000e+00, 3.094907e+00,
+  3.225000e+00, 2.471759e+00,
+  3.300000e+00, 3.017131e+00,
+  3.375000e+00, 3.232381e+00,
+  3.450000e+00, 2.944596e+00,
+  3.525000e+00, 3.385343e+00,
+  3.600000e+00, 3.199826e+00,
+  3.675000e+00, 3.423039e+00,
+  3.750000e+00, 3.621552e+00,
+  3.825000e+00, 3.559255e+00,
+  3.900000e+00, 3.530713e+00,
+  3.975000e+00, 3.561766e+00,
+  4.050000e+00, 3.544574e+00,
+  4.125000e+00, 3.867945e+00,
+  4.200000e+00, 4.049776e+00,
+  4.275000e+00, 3.885601e+00,
+  4.350000e+00, 4.110505e+00,
+  4.425000e+00, 4.345320e+00,
+  4.500000e+00, 4.161241e+00,
+  4.575000e+00, 4.363407e+00,
+  4.650000e+00, 4.161576e+00,
+  4.725000e+00, 4.619728e+00,
+  4.800000e+00, 4.737410e+00,
+  4.875000e+00, 4.727863e+00,
+  4.950000e+00, 4.669206e+00,
+};
+
+// A test cost function, similar to the one in curve_fitting.c.
+int exponential_residual(void* user_data,
+                         double** parameters,
+                         double* residuals,
+                         double** jacobians) {
+  double* measurement = (double*) user_data;
+  double x = measurement[0];
+  double y = measurement[1];
+  double m = parameters[0][0];
+  double c = parameters[1][0];
+
+  residuals[0] = y - exp(m * x + c);
+  if (jacobians == NULL) {
+    return 1;
+  }
+  if (jacobians[0] != NULL) {
+    jacobians[0][0] = - x * exp(m * x + c);  // dr/dm
+  }
+  if (jacobians[1] != NULL) {
+    jacobians[1][0] =     - exp(m * x + c);  // dr/dc
+  }
+  return 1;
+}
+
+namespace ceres {
+namespace internal {
+
+TEST(C_API, SimpleEndToEndTest) {
+  double m = 0.0;
+  double c = 0.0;
+  double *parameter_pointers[] = { &m, &c };
+  int parameter_sizes[] = { 1, 1 };
+
+  ceres_problem_t* problem = ceres_create_problem();
+  for (int i = 0; i < num_observations; ++i) {
+    ceres_problem_add_residual_block(
+        problem,
+        exponential_residual,  // Cost function
+        &data[2 * i],          // Points to the (x,y) measurement
+        NULL,                  // Loss function
+        NULL,                  // Loss function user data
+        1,                     // Number of residuals
+        2,                     // Number of parameter blocks
+        parameter_sizes,
+        parameter_pointers);
+  }
+
+  ceres_solve(problem);
+
+  EXPECT_NEAR(0.3, m, 0.02);
+  EXPECT_NEAR(0.1, c, 0.04);
+
+  ceres_free_problem(problem);
+}
+
+template<typename T>
+class ScopedSetValue {
+ public:
+  ScopedSetValue(T* variable, T new_value)
+      : variable_(variable), old_value_(*variable) {
+    *variable = new_value;
+  }
+  ~ScopedSetValue() {
+    *variable_ = old_value_;
+  }
+
+ private:
+  T* variable_;
+  T old_value_;
+};
+
+TEST(C_API, LossFunctions) {
+  double m = 0.2;
+  double c = 0.03;
+  double *parameter_pointers[] = { &m, &c };
+  int parameter_sizes[] = { 1, 1 };
+
+  // Create two outliers, but be careful to leave the data intact.
+  ScopedSetValue<double> outlier1x(&data[12], 2.5);
+  ScopedSetValue<double> outlier1y(&data[13], 1.0e3);
+  ScopedSetValue<double> outlier2x(&data[14], 3.2);
+  ScopedSetValue<double> outlier2y(&data[15], 30e3);
+
+  // Create a cauchy cost function, and reuse it many times.
+  void* cauchy_loss_data =
+      ceres_create_cauchy_loss_function_data(5.0);
+
+  ceres_problem_t* problem = ceres_create_problem();
+  for (int i = 0; i < num_observations; ++i) {
+    ceres_problem_add_residual_block(
+        problem,
+        exponential_residual,  // Cost function
+        &data[2 * i],          // Points to the (x,y) measurement
+        ceres_stock_loss_function,
+        cauchy_loss_data,      // Loss function user data
+        1,                     // Number of residuals
+        2,                     // Number of parameter blocks
+        parameter_sizes,
+        parameter_pointers);
+  }
+
+  ceres_solve(problem);
+
+  EXPECT_NEAR(0.3, m, 0.02);
+  EXPECT_NEAR(0.1, c, 0.04);
+
+  ceres_free_stock_loss_function_data(cauchy_loss_data);
+  ceres_free_problem(problem);
+}
+
+}  // namespace internal
+}  // namespace ceres