Fix an exact equality test causing breakage in gradient_checker_test.

Also clang-format the file to fix some accumulated cruft.

Change-Id: Icf41e3f864a4fe925426477893602b50ff2131f4
diff --git a/internal/ceres/gradient_checker_test.cc b/internal/ceres/gradient_checker_test.cc
index 3d40a4d..85d58b9 100644
--- a/internal/ceres/gradient_checker_test.cc
+++ b/internal/ceres/gradient_checker_test.cc
@@ -1,5 +1,5 @@
 // Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2015 Google Inc. All rights reserved.
+// Copyright 2016 Google Inc. All rights reserved.
 // http://ceres-solver.org/
 //
 // Redistribution and use in source and binary forms, with or without
@@ -58,7 +58,7 @@
 // version, they are both block vectors, of course.
 class GoodTestTerm : public CostFunction {
  public:
-  GoodTestTerm(int arity, int const *dim) : arity_(arity), return_value_(true) {
+  GoodTestTerm(int arity, int const* dim) : arity_(arity), return_value_(true) {
     // Make 'arity' random vectors.
     a_.resize(arity_);
     for (int j = 0; j < arity_; ++j) {
@@ -98,7 +98,7 @@
         if (jacobians[j]) {
           for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
             // See comments before class.
-            jacobians[j][u] = - f * a_[j][u];
+            jacobians[j][u] = -f * a_[j][u];
           }
         }
       }
@@ -107,9 +107,7 @@
     return true;
   }
 
-  void SetReturnValue(bool return_value) {
-    return_value_ = return_value;
-  }
+  void SetReturnValue(bool return_value) { return_value_ = return_value; }
 
  private:
   int arity_;
@@ -119,7 +117,7 @@
 
 class BadTestTerm : public CostFunction {
  public:
-  BadTestTerm(int arity, int const *dim) : arity_(arity) {
+  BadTestTerm(int arity, int const* dim) : arity_(arity) {
     // Make 'arity' random vectors.
     a_.resize(arity_);
     for (int j = 0; j < arity_; ++j) {
@@ -156,7 +154,7 @@
         if (jacobians[j]) {
           for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
             // See comments before class.
-            jacobians[j][u] = - f * a_[j][u] + 0.001;
+            jacobians[j][u] = -f * a_[j][u] + 0.001;
           }
         }
       }
@@ -172,10 +170,10 @@
 
 const double kTolerance = 1e-6;
 
-void CheckDimensions(
-    const GradientChecker::ProbeResults& results,
-    const std::vector<int>& parameter_sizes,
-    const std::vector<int>& local_parameter_sizes, int residual_size) {
+void CheckDimensions(const GradientChecker::ProbeResults& results,
+                     const std::vector<int>& parameter_sizes,
+                     const std::vector<int>& local_parameter_sizes,
+                     int residual_size) {
   CHECK_EQ(parameter_sizes.size(), local_parameter_sizes.size());
   int num_parameters = parameter_sizes.size();
   ASSERT_EQ(residual_size, results.residuals.size());
@@ -187,7 +185,8 @@
     EXPECT_EQ(residual_size, results.local_jacobians.at(i).rows());
     EXPECT_EQ(local_parameter_sizes[i], results.local_jacobians.at(i).cols());
     EXPECT_EQ(residual_size, results.local_numeric_jacobians.at(i).rows());
-    EXPECT_EQ(local_parameter_sizes[i], results.local_numeric_jacobians.at(i).cols());
+    EXPECT_EQ(local_parameter_sizes[i],
+              results.local_numeric_jacobians.at(i).cols());
     EXPECT_EQ(residual_size, results.jacobians.at(i).rows());
     EXPECT_EQ(parameter_sizes[i], results.jacobians.at(i).cols());
     EXPECT_EQ(residual_size, results.numeric_jacobians.at(i).rows());
@@ -221,9 +220,9 @@
   GoodTestTerm good_term(num_parameters, parameter_sizes.data());
   GradientChecker good_gradient_checker(&good_term, NULL, numeric_diff_options);
   EXPECT_TRUE(good_gradient_checker.Probe(parameters.get(), kTolerance, NULL));
-  EXPECT_TRUE(good_gradient_checker.Probe(parameters.get(), kTolerance,
-                                          &results))
-    << results.error_log;
+  EXPECT_TRUE(
+      good_gradient_checker.Probe(parameters.get(), kTolerance, &results))
+      << results.error_log;
 
   // Check that results contain sensible data.
   ASSERT_EQ(results.return_value, true);
@@ -235,9 +234,9 @@
   // Test that if the cost function return false, Probe should return false.
   good_term.SetReturnValue(false);
   EXPECT_FALSE(good_gradient_checker.Probe(parameters.get(), kTolerance, NULL));
-  EXPECT_FALSE(good_gradient_checker.Probe(parameters.get(), kTolerance,
-                                           &results))
-    << results.error_log;
+  EXPECT_FALSE(
+      good_gradient_checker.Probe(parameters.get(), kTolerance, &results))
+      << results.error_log;
 
   // Check that results contain sensible data.
   ASSERT_EQ(results.return_value, false);
@@ -254,8 +253,8 @@
   BadTestTerm bad_term(num_parameters, parameter_sizes.data());
   GradientChecker bad_gradient_checker(&bad_term, NULL, numeric_diff_options);
   EXPECT_FALSE(bad_gradient_checker.Probe(parameters.get(), kTolerance, NULL));
-  EXPECT_FALSE(bad_gradient_checker.Probe(parameters.get(), kTolerance,
-                                          &results));
+  EXPECT_FALSE(
+      bad_gradient_checker.Probe(parameters.get(), kTolerance, &results));
 
   // Check that results contain sensible data.
   ASSERT_EQ(results.return_value, true);
@@ -279,7 +278,6 @@
   }
 }
 
-
 /**
  * Helper cost function that multiplies the parameters by the given jacobians
  * and adds a constant offset.
@@ -291,7 +289,8 @@
     set_num_residuals(residuals_offset_.size());
   }
 
-  virtual bool Evaluate(double const* const* parameter_ptrs, double* residuals_ptr,
+  virtual bool Evaluate(double const* const* parameter_ptrs,
+                        double* residuals_ptr,
                         double** residual_J_params) const {
     CHECK_GE(residual_J_params_.size(), 0.0);
     VectorRef residuals(residuals_ptr, residual_J_params_[0].rows());
@@ -308,8 +307,8 @@
       // Return Jacobian.
       if (residual_J_params != NULL && residual_J_params[i] != NULL) {
         Eigen::Map<Matrix> residual_J_param_out(residual_J_params[i],
-                                                       residual_J_param.rows(),
-                                                       residual_J_param.cols());
+                                                residual_J_param.rows(),
+                                                residual_J_param.cols());
         if (jacobian_offsets_.count(i) != 0) {
           residual_J_param_out = residual_J_param + jacobian_offsets_.at(i);
         } else {
@@ -414,8 +413,8 @@
 
   Matrix residual_expected = residual_offset + j0 * param0 + j1 * param1;
 
-  EXPECT_TRUE(j1_out == j0);
-  EXPECT_TRUE(j2_out == j1);
+  ExpectMatricesClose(j1_out, j0, std::numeric_limits<double>::epsilon());
+  ExpectMatricesClose(j2_out, j1, std::numeric_limits<double>::epsilon());
   ExpectMatricesClose(residual, residual_expected, kTolerance);
 
   // Create local parameterization.
@@ -433,7 +432,9 @@
 
   Eigen::Matrix<double, 3, 2, Eigen::RowMajor> global_J_local_out;
   parameterization.ComputeJacobian(x.data(), global_J_local_out.data());
-  EXPECT_TRUE(global_J_local_out == global_J_local);
+  ExpectMatricesClose(global_J_local_out,
+                      global_J_local,
+                      std::numeric_limits<double>::epsilon());
 
   Eigen::Vector3d x_plus_delta;
   parameterization.Plus(x.data(), delta.data(), x_plus_delta.data());
@@ -446,8 +447,8 @@
   parameterizations[1] = NULL;
   NumericDiffOptions numeric_diff_options;
   GradientChecker::ProbeResults results;
-  GradientChecker gradient_checker(&cost_function, &parameterizations,
-                                   numeric_diff_options);
+  GradientChecker gradient_checker(
+      &cost_function, &parameterizations, numeric_diff_options);
 
   Problem::Options problem_options;
   problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
@@ -457,8 +458,8 @@
   Eigen::Vector2d param1_solver;
   problem.AddParameterBlock(param0_solver.data(), 3, &parameterization);
   problem.AddParameterBlock(param1_solver.data(), 2);
-  problem.AddResidualBlock(&cost_function, NULL, param0_solver.data(),
-                           param1_solver.data());
+  problem.AddResidualBlock(
+      &cost_function, NULL, param0_solver.data(), param1_solver.data());
   Solver::Options solver_options;
   solver_options.check_gradients = true;
   solver_options.initial_trust_region_radius = 1e10;
@@ -468,20 +469,25 @@
   // First test case: everything is correct.
   EXPECT_TRUE(gradient_checker.Probe(parameters.data(), kTolerance, NULL));
   EXPECT_TRUE(gradient_checker.Probe(parameters.data(), kTolerance, &results))
-    << results.error_log;
+      << results.error_log;
 
   // Check that results contain correct data.
   ASSERT_EQ(results.return_value, true);
-  ASSERT_TRUE(results.residuals == residual);
+  ExpectMatricesClose(
+      results.residuals, residual, std::numeric_limits<double>::epsilon());
   CheckDimensions(results, parameter_sizes, local_parameter_sizes, 3);
-  ExpectMatricesClose(results.local_jacobians.at(0), j0 * global_J_local,
-                      kTolerance);
-  EXPECT_TRUE(results.local_jacobians.at(1) == j1);
-  ExpectMatricesClose(results.local_numeric_jacobians.at(0),
-                      j0 * global_J_local, kTolerance);
+  ExpectMatricesClose(
+      results.local_jacobians.at(0), j0 * global_J_local, kTolerance);
+  ExpectMatricesClose(results.local_jacobians.at(1),
+                      j1,
+                      std::numeric_limits<double>::epsilon());
+  ExpectMatricesClose(
+      results.local_numeric_jacobians.at(0), j0 * global_J_local, kTolerance);
   ExpectMatricesClose(results.local_numeric_jacobians.at(1), j1, kTolerance);
-  EXPECT_TRUE(results.jacobians.at(0) == j0);
-  EXPECT_TRUE(results.jacobians.at(1) == j1);
+  ExpectMatricesClose(
+      results.jacobians.at(0), j0, std::numeric_limits<double>::epsilon());
+  ExpectMatricesClose(
+      results.jacobians.at(1), j1, std::numeric_limits<double>::epsilon());
   ExpectMatricesClose(results.numeric_jacobians.at(0), j0, kTolerance);
   ExpectMatricesClose(results.numeric_jacobians.at(1), j1, kTolerance);
   EXPECT_GE(results.maximum_relative_error, 0.0);
@@ -502,22 +508,27 @@
   cost_function.SetJacobianOffset(0, j0_offset);
   EXPECT_FALSE(gradient_checker.Probe(parameters.data(), kTolerance, NULL));
   EXPECT_FALSE(gradient_checker.Probe(parameters.data(), kTolerance, &results))
-    << results.error_log;
+      << results.error_log;
 
   // Check that results contain correct data.
   ASSERT_EQ(results.return_value, true);
-  ASSERT_TRUE(results.residuals == residual);
+  ExpectMatricesClose(
+      results.residuals, residual, std::numeric_limits<double>::epsilon());
   CheckDimensions(results, parameter_sizes, local_parameter_sizes, 3);
   ASSERT_EQ(results.local_jacobians.size(), 2);
   ASSERT_EQ(results.local_numeric_jacobians.size(), 2);
   ExpectMatricesClose(results.local_jacobians.at(0),
-                      (j0 + j0_offset) * global_J_local, kTolerance);
-  EXPECT_TRUE(results.local_jacobians.at(1) == j1);
-  ExpectMatricesClose(results.local_numeric_jacobians.at(0),
-                      j0 * global_J_local, kTolerance);
+                      (j0 + j0_offset) * global_J_local,
+                      kTolerance);
+  ExpectMatricesClose(results.local_jacobians.at(1),
+                      j1,
+                      std::numeric_limits<double>::epsilon());
+  ExpectMatricesClose(
+      results.local_numeric_jacobians.at(0), j0 * global_J_local, kTolerance);
   ExpectMatricesClose(results.local_numeric_jacobians.at(1), j1, kTolerance);
   ExpectMatricesClose(results.jacobians.at(0), j0 + j0_offset, kTolerance);
-  EXPECT_TRUE(results.jacobians.at(1) == j1);
+  ExpectMatricesClose(
+      results.jacobians.at(1), j1, std::numeric_limits<double>::epsilon());
   ExpectMatricesClose(results.numeric_jacobians.at(0), j0, kTolerance);
   ExpectMatricesClose(results.numeric_jacobians.at(1), j1, kTolerance);
   EXPECT_GT(results.maximum_relative_error, 0.0);
@@ -536,23 +547,28 @@
 
   // Verify that the gradient checker does not treat this as an error.
   EXPECT_TRUE(gradient_checker.Probe(parameters.data(), kTolerance, &results))
-    << results.error_log;
+      << results.error_log;
 
   // Check that results contain correct data.
   ASSERT_EQ(results.return_value, true);
-  ASSERT_TRUE(results.residuals == residual);
+  ExpectMatricesClose(
+      results.residuals, residual, std::numeric_limits<double>::epsilon());
   CheckDimensions(results, parameter_sizes, local_parameter_sizes, 3);
   ASSERT_EQ(results.local_jacobians.size(), 2);
   ASSERT_EQ(results.local_numeric_jacobians.size(), 2);
   ExpectMatricesClose(results.local_jacobians.at(0),
                       (j0 + j0_offset) * parameterization.global_J_local,
                       kTolerance);
-  EXPECT_TRUE(results.local_jacobians.at(1) == j1);
+  ExpectMatricesClose(results.local_jacobians.at(1),
+                      j1,
+                      std::numeric_limits<double>::epsilon());
   ExpectMatricesClose(results.local_numeric_jacobians.at(0),
-                      j0 * parameterization.global_J_local, kTolerance);
+                      j0 * parameterization.global_J_local,
+                      kTolerance);
   ExpectMatricesClose(results.local_numeric_jacobians.at(1), j1, kTolerance);
   ExpectMatricesClose(results.jacobians.at(0), j0 + j0_offset, kTolerance);
-  EXPECT_TRUE(results.jacobians.at(1) == j1);
+  ExpectMatricesClose(
+      results.jacobians.at(1), j1, std::numeric_limits<double>::epsilon());
   ExpectMatricesClose(results.numeric_jacobians.at(0), j0, kTolerance);
   ExpectMatricesClose(results.numeric_jacobians.at(1), j1, kTolerance);
   EXPECT_GE(results.maximum_relative_error, 0.0);