Improve the test coverage in small_blas_test 1. Add explicit tests for MatrixMatrixMultiplyNaive and MatrixTransposeMatrixMultiplyNaive 2. Add tests that exercise a variety of matrix sizes for MatrixVectorMultiply and MatrixTransposeVectorMultiply. Change-Id: I0b25ec346b719f19b2067848f9d4bb64c9848750
diff --git a/internal/ceres/small_blas_test.cc b/internal/ceres/small_blas_test.cc index ddb11ab..2914244 100644 --- a/internal/ceres/small_blas_test.cc +++ b/internal/ceres/small_blas_test.cc
@@ -202,100 +202,276 @@ } } -TEST(BLAS, MatrixVectorMultiply) { +// TODO(sameeragarwal): Dedup and reduce the amount of duplication of +// test code in this file. + +TEST(BLAS, MatrixMatrixMultiplyNaive) { + const int kRowA = 3; + const int kColA = 5; + Matrix A(kRowA, kColA); + A.setOnes(); + + const int kRowB = 5; + const int kColB = 7; + Matrix B(kRowB, kColB); + B.setOnes(); + + for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { + for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { + Matrix C(row_stride_c, col_stride_c); + C.setOnes(); + + Matrix C_plus = C; + Matrix C_minus = C; + Matrix C_assign = C; + + Matrix C_plus_ref = C; + Matrix C_minus_ref = C; + Matrix C_assign_ref = C; + for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { + for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { + C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += + A * B; + + MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 1>( + A.data(), kRowA, kColA, + B.data(), kRowB, kColB, + C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); + + EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) + << "C += A * B \n" + << "row_stride_c : " << row_stride_c << "\n" + << "col_stride_c : " << col_stride_c << "\n" + << "start_row_c : " << start_row_c << "\n" + << "start_col_c : " << start_col_c << "\n" + << "Cref : \n" << C_plus_ref << "\n" + << "C: \n" << C_plus; + + + C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= + A * B; + + MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, -1>( + A.data(), kRowA, kColA, + B.data(), kRowB, kColB, + C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); + + EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) + << "C -= A * B \n" + << "row_stride_c : " << row_stride_c << "\n" + << "col_stride_c : " << col_stride_c << "\n" + << "start_row_c : " << start_row_c << "\n" + << "start_col_c : " << start_col_c << "\n" + << "Cref : \n" << C_minus_ref << "\n" + << "C: \n" << C_minus; + + C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = + A * B; + + MatrixMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 0>( + A.data(), kRowA, kColA, + B.data(), kRowB, kColB, + C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); + + EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) + << "C = A * B \n" + << "row_stride_c : " << row_stride_c << "\n" + << "col_stride_c : " << col_stride_c << "\n" + << "start_row_c : " << start_row_c << "\n" + << "start_col_c : " << start_col_c << "\n" + << "Cref : \n" << C_assign_ref << "\n" + << "C: \n" << C_assign; + } + } + } + } +} + +TEST(BLAS, MatrixTransposeMatrixMultiplyNaive) { const int kRowA = 5; const int kColA = 3; Matrix A(kRowA, kColA); A.setOnes(); - Vector b(kColA); - b.setOnes(); + const int kRowB = 5; + const int kColB = 7; + Matrix B(kRowB, kColB); + B.setOnes(); - Vector c(kRowA); - c.setOnes(); + for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { + for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { + Matrix C(row_stride_c, col_stride_c); + C.setOnes(); - Vector c_plus = c; - Vector c_minus = c; - Vector c_assign = c; + Matrix C_plus = C; + Matrix C_minus = C; + Matrix C_assign = C; - Vector c_plus_ref = c; - Vector c_minus_ref = c; - Vector c_assign_ref = c; + Matrix C_plus_ref = C; + Matrix C_minus_ref = C; + Matrix C_assign_ref = C; + for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { + for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { + C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += + A.transpose() * B; - c_plus_ref += A * b; - MatrixVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, - b.data(), - c_plus.data()); - EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) - << "c += A * b \n" - << "c_ref : \n" << c_plus_ref << "\n" - << "c: \n" << c_plus; + MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 1>( + A.data(), kRowA, kColA, + B.data(), kRowB, kColB, + C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); - c_minus_ref -= A * b; - MatrixVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, - b.data(), - c_minus.data()); - EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) - << "c += A * b \n" - << "c_ref : \n" << c_minus_ref << "\n" - << "c: \n" << c_minus; + EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) + << "C += A' * B \n" + << "row_stride_c : " << row_stride_c << "\n" + << "col_stride_c : " << col_stride_c << "\n" + << "start_row_c : " << start_row_c << "\n" + << "start_col_c : " << start_col_c << "\n" + << "Cref : \n" << C_plus_ref << "\n" + << "C: \n" << C_plus; - c_assign_ref = A * b; - MatrixVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, - b.data(), - c_assign.data()); - EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) - << "c += A * b \n" - << "c_ref : \n" << c_assign_ref << "\n" - << "c: \n" << c_assign; + C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= + A.transpose() * B; + + MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, -1>( + A.data(), kRowA, kColA, + B.data(), kRowB, kColB, + C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); + + EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) + << "C -= A' * B \n" + << "row_stride_c : " << row_stride_c << "\n" + << "col_stride_c : " << col_stride_c << "\n" + << "start_row_c : " << start_row_c << "\n" + << "start_col_c : " << start_col_c << "\n" + << "Cref : \n" << C_minus_ref << "\n" + << "C: \n" << C_minus; + + C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = + A.transpose() * B; + + MatrixTransposeMatrixMultiplyNaive<kRowA, kColA, kRowB, kColB, 0>( + A.data(), kRowA, kColA, + B.data(), kRowB, kColB, + C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); + + EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) + << "C = A' * B \n" + << "row_stride_c : " << row_stride_c << "\n" + << "col_stride_c : " << col_stride_c << "\n" + << "start_row_c : " << start_row_c << "\n" + << "start_col_c : " << start_col_c << "\n" + << "Cref : \n" << C_assign_ref << "\n" + << "C: \n" << C_assign; + } + } + } + } +} + +TEST(BLAS, MatrixVectorMultiply) { + for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { + for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { + Matrix A(num_rows_a, num_cols_a); + A.setOnes(); + + Vector b(num_cols_a); + b.setOnes(); + + Vector c(num_rows_a); + c.setOnes(); + + Vector c_plus = c; + Vector c_minus = c; + Vector c_assign = c; + + Vector c_plus_ref = c; + Vector c_minus_ref = c; + Vector c_assign_ref = c; + + c_plus_ref += A * b; + MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( + A.data(), num_rows_a, num_cols_a, + b.data(), + c_plus.data()); + EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) + << "c += A * b \n" + << "c_ref : \n" << c_plus_ref << "\n" + << "c: \n" << c_plus; + + c_minus_ref -= A * b; + MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( + A.data(), num_rows_a, num_cols_a, + b.data(), + c_minus.data()); + EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) + << "c += A * b \n" + << "c_ref : \n" << c_minus_ref << "\n" + << "c: \n" << c_minus; + + c_assign_ref = A * b; + MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( + A.data(), num_rows_a, num_cols_a, + b.data(), + c_assign.data()); + EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) + << "c += A * b \n" + << "c_ref : \n" << c_assign_ref << "\n" + << "c: \n" << c_assign; + } + } } TEST(BLAS, MatrixTransposeVectorMultiply) { - const int kRowA = 5; - const int kColA = 3; - Matrix A(kRowA, kColA); - A.setRandom(); + for (int num_rows_a = 1; num_rows_a < 10; ++num_rows_a) { + for (int num_cols_a = 1; num_cols_a < 10; ++num_cols_a) { + Matrix A(num_rows_a, num_cols_a); + A.setRandom(); - Vector b(kRowA); - b.setRandom(); + Vector b(num_rows_a); + b.setRandom(); - Vector c(kColA); - c.setOnes(); + Vector c(num_cols_a); + c.setOnes(); - Vector c_plus = c; - Vector c_minus = c; - Vector c_assign = c; + Vector c_plus = c; + Vector c_minus = c; + Vector c_assign = c; - Vector c_plus_ref = c; - Vector c_minus_ref = c; - Vector c_assign_ref = c; + Vector c_plus_ref = c; + Vector c_minus_ref = c; + Vector c_assign_ref = c; - c_plus_ref += A.transpose() * b; - MatrixTransposeVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, - b.data(), - c_plus.data()); - EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) - << "c += A' * b \n" - << "c_ref : \n" << c_plus_ref << "\n" - << "c: \n" << c_plus; + c_plus_ref += A.transpose() * b; + MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( + A.data(), num_rows_a, num_cols_a, + b.data(), + c_plus.data()); + EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) + << "c += A' * b \n" + << "c_ref : \n" << c_plus_ref << "\n" + << "c: \n" << c_plus; - c_minus_ref -= A.transpose() * b; - MatrixTransposeVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, - b.data(), - c_minus.data()); - EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) - << "c += A' * b \n" - << "c_ref : \n" << c_minus_ref << "\n" - << "c: \n" << c_minus; + c_minus_ref -= A.transpose() * b; + MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, -1>( + A.data(), num_rows_a, num_cols_a, + b.data(), + c_minus.data()); + EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) + << "c += A' * b \n" + << "c_ref : \n" << c_minus_ref << "\n" + << "c: \n" << c_minus; - c_assign_ref = A.transpose() * b; - MatrixTransposeVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, - b.data(), - c_assign.data()); - EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) - << "c += A' * b \n" - << "c_ref : \n" << c_assign_ref << "\n" - << "c: \n" << c_assign; + c_assign_ref = A.transpose() * b; + MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 0>( + A.data(), num_rows_a, num_cols_a, + b.data(), + c_assign.data()); + EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) + << "c += A' * b \n" + << "c_ref : \n" << c_assign_ref << "\n" + << "c: \n" << c_assign; + } + } } } // namespace internal