Initial commit of Ceres Solver.
diff --git a/examples/bundle_adjuster.cc b/examples/bundle_adjuster.cc
new file mode 100644
index 0000000..bafdf25
--- /dev/null
+++ b/examples/bundle_adjuster.cc
@@ -0,0 +1,281 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+//
+// An example of solving a dynamically sized problem with various
+// solvers and loss functions.
+//
+// For a simpler bare bones example of doing bundle adjustment with
+// Ceres, please see simple_bundle_adjuster.cc.
+//
+// NOTE: This example will not compile without gflags and SuiteSparse.
+//
+// The problem being solved here is known as a Bundle Adjustment
+// problem in computer vision. Given a set of 3d points X_1, ..., X_n,
+// a set of cameras P_1, ..., P_m. If the point X_i is visible in
+// image j, then there is a 2D observation u_ij that is the expected
+// projection of X_i using P_j. The aim of this optimization is to
+// find values of X_i and P_j such that the reprojection error
+//
+//    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
+//
+// is minimized.
+//
+// The problem used here comes from a collection of bundle adjustment
+// problems published at University of Washington.
+// http://grail.cs.washington.edu/projects/bal
+
+#include <algorithm>
+#include <cmath>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+#include <gflags/gflags.h>
+#include <glog/logging.h>
+#include "bal_problem.h"
+#include "snavely_reprojection_error.h"
+#include "ceres/ceres.h"
+
+DEFINE_string(input, "", "Input File name");
+
+DEFINE_string(solver_type, "sparse_schur", "Options are: "
+              "sparse_schur, dense_schur, iterative_schur, cholesky "
+              "and dense_qr");
+
+DEFINE_string(preconditioner_type, "jacobi", "Options are: "
+              "identity, jacobi, schur_jacobi, cluster_jacobi, "
+              "cluster_tridiagonal");
+
+DEFINE_int32(num_iterations, 5, "Number of iterations");
+DEFINE_int32(num_threads, 1, "Number of threads");
+DEFINE_bool(use_schur_ordering, false, "Use automatic Schur ordering.");
+DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
+            "rotations. If false, angle axis is used");
+DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
+            "parameterization.");
+DEFINE_bool(robustify, false, "Use a robust loss function");
+
+namespace ceres {
+namespace examples {
+
+void SetLinearSolver(Solver::Options* options) {
+  if (FLAGS_solver_type == "sparse_schur") {
+    options->linear_solver_type = ceres::SPARSE_SCHUR;
+  } else if (FLAGS_solver_type == "dense_schur") {
+    options->linear_solver_type = ceres::DENSE_SCHUR;
+  } else if (FLAGS_solver_type == "iterative_schur") {
+    options->linear_solver_type = ceres::ITERATIVE_SCHUR;
+  } else if (FLAGS_solver_type == "cholesky") {
+    options->linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
+  } else if (FLAGS_solver_type == "dense_qr") {
+    // DENSE_QR is included here for completeness, but actually using
+    // this opttion is a bad idea due to the amount of memory needed
+    // to store even the smallest of the bundle adjustment jacobian
+    // arrays
+    options->linear_solver_type = ceres::DENSE_QR;
+  } else {
+    LOG(FATAL) << "Unknown ceres solver type: "
+               << FLAGS_solver_type;
+  }
+
+  if (options->linear_solver_type == ceres::ITERATIVE_SCHUR) {
+    options->linear_solver_min_num_iterations = 5;
+    if (FLAGS_preconditioner_type == "identity") {
+      options->preconditioner_type = ceres::IDENTITY;
+    } else if (FLAGS_preconditioner_type == "jacobi") {
+      options->preconditioner_type = ceres::JACOBI;
+    } else if (FLAGS_preconditioner_type == "schur_jacobi") {
+      options->preconditioner_type = ceres::SCHUR_JACOBI;
+    } else if (FLAGS_preconditioner_type == "cluster_jacobi") {
+      options->preconditioner_type = ceres::CLUSTER_JACOBI;
+    } else if (FLAGS_preconditioner_type == "cluster_tridiagonal") {
+      options->preconditioner_type = ceres::CLUSTER_TRIDIAGONAL;
+    } else {
+      LOG(FATAL) << "Unknown ceres preconditioner type: "
+               << FLAGS_preconditioner_type;
+    }
+  }
+
+  options->num_linear_solver_threads = FLAGS_num_threads;
+}
+
+void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
+  // Bundle adjustment problems have a sparsity structure that makes
+  // them amenable to more specialized and much more efficient
+  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
+  // ITERATIVE_SCHUR solvers make use of this specialized
+  // structure. Using them however requires that the ParameterBlocks
+  // are in a particular order (points before cameras) and
+  // Solver::Options::num_eliminate_blocks is set to the number of
+  // points.
+  //
+  // This can either be done by specifying Options::ordering_type =
+  // ceres::SCHUR, in which case Ceres will automatically determine
+  // the right ParameterBlock ordering, or by manually specifying a
+  // suitable ordering vector and defining
+  // Options::num_eliminate_blocks.
+  if (FLAGS_use_schur_ordering) {
+    options->ordering_type = ceres::SCHUR;
+    return;
+  }
+
+  options->ordering_type = ceres::USER;
+  const int num_points = bal_problem->num_points();
+  const int point_block_size = bal_problem->point_block_size();
+  double* points = bal_problem->mutable_points();
+  const int num_cameras = bal_problem->num_cameras();
+  const int camera_block_size = bal_problem->camera_block_size();
+  double* cameras = bal_problem->mutable_cameras();
+
+  // The points come before the cameras.
+  for (int i = 0; i < num_points; ++i) {
+    options->ordering.push_back(points + point_block_size * i);
+  }
+
+  for (int i = 0; i < num_cameras; ++i) {
+    // When using axis-angle, there is a single parameter block for
+    // the entire camera.
+    options->ordering.push_back(cameras + camera_block_size * i);
+
+    // If quaternions are used, there are two blocks, so add the
+    // second block to the ordering.
+    if (FLAGS_use_quaternions) {
+      options->ordering.push_back(cameras + camera_block_size * i + 4);
+    }
+  }
+
+  options->num_eliminate_blocks = num_points;
+}
+
+void SetMinimizerOptions(Solver::Options* options) {
+  options->max_num_iterations = FLAGS_num_iterations;
+  options->minimizer_progress_to_stdout = true;
+  options->num_threads = FLAGS_num_threads;
+}
+
+void SetSolverOptionsFromFlags(BALProblem* bal_problem,
+                               Solver::Options* options) {
+  SetLinearSolver(options);
+  SetOrdering(bal_problem, options);
+  SetMinimizerOptions(options);
+}
+
+void BuildProblem(BALProblem* bal_problem, Problem* problem) {
+  const int point_block_size = bal_problem->point_block_size();
+  const int camera_block_size = bal_problem->camera_block_size();
+  double* points = bal_problem->mutable_points();
+  double* cameras = bal_problem->mutable_cameras();
+
+  // Observations is 2*num_observations long array observations =
+  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
+  // and y positions of the observation.
+  const double* observations = bal_problem->observations();
+
+  for (int i = 0; i < bal_problem->num_observations(); ++i) {
+    CostFunction* cost_function;
+    // Each Residual block takes a point and a camera as input and
+    // outputs a 2 dimensional residual.
+    if (FLAGS_use_quaternions) {
+      cost_function = new AutoDiffCostFunction<
+          SnavelyReprojectionErrorWitQuaternions, 2, 4, 6, 3>(
+              new SnavelyReprojectionErrorWitQuaternions(
+                  observations[2 * i + 0],
+                  observations[2 * i + 1]));
+    } else {
+      cost_function =
+          new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
+              new SnavelyReprojectionError(observations[2 * i + 0],
+                                           observations[2 * i + 1]));
+    }
+
+    // If enabled use Huber's loss function.
+    LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
+
+    // Each observation correponds to a pair of a camera and a point
+    // which are identified by camera_index()[i] and point_index()[i]
+    // respectively.
+    double* camera =
+        cameras + camera_block_size * bal_problem->camera_index()[i];
+    double* point = points + point_block_size * bal_problem->point_index()[i];
+
+    if (FLAGS_use_quaternions) {
+      // When using quaternions, we split the camera into two
+      // parameter blocks. One of size 4 for the quaternion and the
+      // other of size 6 containing the translation, focal length and
+      // the radial distortion parameters.
+      problem->AddResidualBlock(cost_function,
+                                loss_function,
+                                camera,
+                                camera + 4,
+                                point);
+    } else {
+      problem->AddResidualBlock(cost_function, loss_function, camera, point);
+    }
+  }
+
+  if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
+    LocalParameterization* quaternion_parameterization =
+         new QuaternionParameterization;
+    for (int i = 0; i < bal_problem->num_cameras(); ++i) {
+      problem->SetParameterization(cameras + camera_block_size * i,
+                                   quaternion_parameterization);
+    }
+  }
+}
+
+void SolveProblem(const char* filename) {
+  BALProblem bal_problem(filename, FLAGS_use_quaternions);
+  Problem problem;
+  BuildProblem(&bal_problem, &problem);
+  Solver::Options options;
+  SetSolverOptionsFromFlags(&bal_problem, &options);
+
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  std::cout << summary.FullReport() << "\n";
+}
+
+}  // namespace examples
+}  // namespace ceres
+
+int main(int argc, char** argv) {
+  google::ParseCommandLineFlags(&argc, &argv, true);
+  google::InitGoogleLogging(argv[0]);
+  if (FLAGS_input.empty()) {
+    LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
+    return 1;
+  }
+
+  CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
+      << "--use_local_parameterization can only be used with "
+      << "--use_quaternions.";
+  ceres::examples::SolveProblem(FLAGS_input.c_str());
+  return 0;
+}