Initial commit of Ceres Solver.
diff --git a/internal/ceres/autodiff_test.cc b/internal/ceres/autodiff_test.cc
new file mode 100644
index 0000000..e9f0c5e
--- /dev/null
+++ b/internal/ceres/autodiff_test.cc
@@ -0,0 +1,341 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+
+#include "ceres/internal/autodiff.h"
+
+#include "gtest/gtest.h"
+#include "ceres/random.h"
+
+namespace ceres {
+namespace internal {
+
+template <typename T> inline
+T &RowMajor(T *base, int rows, int cols, int i, int j) {
+  return base[cols * i + j];
+}
+
+// Do (symmetric) finite differencing using the given function object 'b' of
+// type 'B' and scalar type 'T' with step size 'del'.
+//
+// The type B should have a signature
+//
+//   bool operator()(T const *, T *) const;
+//
+// which maps a vector of parameters to a vector of outputs.
+template <typename B, typename T, int M, int N> inline
+bool SymmetricDiff(const B& b,
+                   const T par[N],
+                   T del,           // step size.
+                   T fun[M],
+                   T jac[M * N]) {  // row-major.
+  if (!b(par, fun)) {
+    return false;
+  }
+
+  // Temporary parameter vector.
+  T tmp_par[N];
+  for (int j = 0; j < N; ++j) {
+    tmp_par[j] = par[j];
+  }
+
+  // For each dimension, we do one forward step and one backward step in
+  // parameter space, and store the output vector vectors in these vectors.
+  T fwd_fun[M];
+  T bwd_fun[M];
+
+  for (int j = 0; j < N; ++j) {
+    // Forward step.
+    tmp_par[j] = par[j] + del;
+    if (!b(tmp_par, fwd_fun)) {
+      return false;
+    }
+
+    // Backward step.
+    tmp_par[j] = par[j] - del;
+    if (!b(tmp_par, bwd_fun)) {
+      return false;
+    }
+
+    // Symmetric differencing:
+    //   f'(a) = (f(a + h) - f(a - h)) / (2 h)
+    for (int i = 0; i < M; ++i) {
+      RowMajor(jac, M, N, i, j) =
+          (fwd_fun[i] - bwd_fun[i]) / (T(2) * del);
+    }
+
+    // Restore our temporary vector.
+    tmp_par[j] = par[j];
+  }
+
+  return true;
+}
+
+template <typename A> inline
+void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) {
+  // Make convenient names for elements of q.
+  A a = q[0];
+  A b = q[1];
+  A c = q[2];
+  A d = q[3];
+  // This is not to eliminate common sub-expression, but to
+  // make the lines shorter so that they fit in 80 columns!
+  A aa = a*a;
+  A ab = a*b;
+  A ac = a*c;
+  A ad = a*d;
+  A bb = b*b;
+  A bc = b*c;
+  A bd = b*d;
+  A cc = c*c;
+  A cd = c*d;
+  A dd = d*d;
+#define R(i, j) RowMajor(R, 3, 3, (i), (j))
+  R(0, 0) =  aa+bb-cc-dd; R(0, 1) = A(2)*(bc-ad); R(0, 2) = A(2)*(ac+bd);  // NOLINT
+  R(1, 0) = A(2)*(ad+bc); R(1, 1) =  aa-bb+cc-dd; R(1, 2) = A(2)*(cd-ab);  // NOLINT
+  R(2, 0) = A(2)*(bd-ac); R(2, 1) = A(2)*(ab+cd); R(2, 2) =  aa-bb-cc+dd;  // NOLINT
+#undef R
+}
+
+// A structure for projecting a 3x4 camera matrix and a
+// homogeneous 3D point, to a 2D inhomogeneous point.
+struct Projective {
+  // Function that takes P and X as separate vectors:
+  //   P, X -> x
+  template <typename A>
+  bool operator()(A const P[12], A const X[4], A x[2]) const {
+    A PX[3];
+    for (int i = 0; i < 3; ++i) {
+      PX[i] = RowMajor(P, 3, 4, i, 0) * X[0] +
+              RowMajor(P, 3, 4, i, 1) * X[1] +
+              RowMajor(P, 3, 4, i, 2) * X[2] +
+              RowMajor(P, 3, 4, i, 3) * X[3];
+    }
+    if (PX[2] != 0.0) {
+      x[0] = PX[0] / PX[2];
+      x[1] = PX[1] / PX[2];
+      return true;
+    }
+    return false;
+  }
+
+  // Version that takes P and X packed in one vector:
+  //
+  //   (P, X) -> x
+  //
+  template <typename A>
+  bool operator()(A const P_X[12 + 4], A x[2]) const {
+    return operator()(P_X + 0, P_X + 12, x);
+  }
+};
+
+// Test projective camera model projector.
+TEST(AutoDiff, ProjectiveCameraModel) {
+  srand(5);
+  double const tol = 1e-10;  // floating-point tolerance.
+  double const del = 1e-4;   // finite-difference step.
+  double const err = 1e-6;   // finite-difference tolerance.
+
+  Projective b;
+
+  // Make random P and X, in a single vector.
+  double PX[12 + 4];
+  for (int i = 0; i < 12 + 4; ++i) {
+    PX[i] = RandDouble();
+  }
+
+  // Handy names for the P and X parts.
+  double *P = PX + 0;
+  double *X = PX + 12;
+
+  // Apply the mapping, to get image point b_x.
+  double b_x[2];
+  b(P, X, b_x);
+
+  // Use finite differencing to estimate the Jacobian.
+  double fd_x[2];
+  double fd_J[2 * (12 + 4)];
+  ASSERT_TRUE((SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del,
+                                                            fd_x, fd_J)));
+
+  for (int i = 0; i < 2; ++i) {
+    ASSERT_EQ(fd_x[i], b_x[i]);
+  }
+
+  // Use automatic differentiation to compute the Jacobian.
+  double ad_x1[2];
+  double J_PX[2 * (12 + 4)];
+  {
+    double *parameters[] = { PX };
+    double *jacobians[] = { J_PX };
+    ASSERT_TRUE((AutoDiff<Projective, double, 2, 12 + 4>::Differentiate(
+        b, parameters, ad_x1, jacobians)));
+
+    for (int i = 0; i < 2; ++i) {
+      ASSERT_NEAR(ad_x1[i], b_x[i], tol);
+    }
+  }
+
+  // Use automatic differentiation (again), with two arguments.
+  {
+    double ad_x2[2];
+    double J_P[2 * 12];
+    double J_X[2 * 4];
+    double *parameters[] = { P, X };
+    double *jacobians[] = { J_P, J_X };
+    ASSERT_TRUE((AutoDiff<Projective, double, 2, 12, 4>::Differentiate(
+        b, parameters, ad_x2, jacobians)));
+
+    for (int i = 0; i < 2; ++i) {
+      ASSERT_NEAR(ad_x2[i], b_x[i], tol);
+    }
+
+    // Now compare the jacobians we got.
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 12 + 4; ++j) {
+        ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err);
+      }
+
+      for (int j = 0; j < 12; ++j) {
+        ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol);
+      }
+      for (int j = 0; j < 4; ++j) {
+        ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol);
+      }
+    }
+  }
+}
+
+// Object to implement the projection by a calibrated camera.
+struct Metric {
+  // The mapping is
+  //
+  //   q, c, X -> x = dehomg(R(q) (X - c))
+  //
+  // where q is a quaternion and c is the center of projection.
+  //
+  // This function takes three input vectors.
+  template <typename A>
+  bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const {
+    A R[3 * 3];
+    QuaternionToScaledRotation(q, R);
+
+    // Convert the quaternion mapping all the way to projective matrix.
+    A P[3 * 4];
+
+    // Set P(:, 1:3) = R
+    for (int i = 0; i < 3; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        RowMajor(P, 3, 4, i, j) = RowMajor(R, 3, 3, i, j);
+      }
+    }
+
+    // Set P(:, 4) = - R c
+    for (int i = 0; i < 3; ++i) {
+      RowMajor(P, 3, 4, i, 3) =
+        - (RowMajor(R, 3, 3, i, 0) * c[0] +
+           RowMajor(R, 3, 3, i, 1) * c[1] +
+           RowMajor(R, 3, 3, i, 2) * c[2]);
+    }
+
+    A X1[4] = { X[0], X[1], X[2], A(1) };
+    Projective p;
+    return p(P, X1, x);
+  }
+
+  // A version that takes a single vector.
+  template <typename A>
+  bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const {
+    return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x);
+  }
+};
+
+// This test is similar in structure to the previous one.
+TEST(AutoDiff, Metric) {
+  srand(5);
+  double const tol = 1e-10;  // floating-point tolerance.
+  double const del = 1e-4;   // finite-difference step.
+  double const err = 1e-5;   // finite-difference tolerance.
+
+  Metric b;
+
+  // Make random parameter vector.
+  double qcX[4 + 3 + 3];
+  for (int i = 0; i < 4 + 3 + 3; ++i)
+    qcX[i] = RandDouble();
+
+  // Handy names.
+  double *q = qcX;
+  double *c = qcX + 4;
+  double *X = qcX + 4 + 3;
+
+  // Compute projection, b_x.
+  double b_x[2];
+  ASSERT_TRUE(b(q, c, X, b_x));
+
+  // Finite differencing estimate of Jacobian.
+  double fd_x[2];
+  double fd_J[2 * (4 + 3 + 3)];
+  ASSERT_TRUE((SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del,
+                                                           fd_x, fd_J)));
+
+  for (int i = 0; i < 2; ++i) {
+    ASSERT_NEAR(fd_x[i], b_x[i], tol);
+  }
+
+  // Automatic differentiation.
+  double ad_x[2];
+  double J_q[2 * 4];
+  double J_c[2 * 3];
+  double J_X[2 * 3];
+  double *parameters[] = { q, c, X };
+  double *jacobians[] = { J_q, J_c, J_X };
+  ASSERT_TRUE((AutoDiff<Metric, double, 2, 4, 3, 3>::Differentiate(
+      b, parameters, ad_x, jacobians)));
+
+  for (int i = 0; i < 2; ++i) {
+    ASSERT_NEAR(ad_x[i], b_x[i], tol);
+  }
+
+  // Compare the pieces.
+  for (int i = 0; i < 2; ++i) {
+    for (int j = 0; j < 4; ++j) {
+      ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err);
+    }
+    for (int j = 0; j < 3; ++j) {
+      ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err);
+    }
+    for (int j = 0; j < 3; ++j) {
+      ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err);
+    }
+  }
+}
+
+}  // namespace internal
+}  // namespace ceres