Initial commit of Ceres Solver.
diff --git a/internal/ceres/gradient_checking_cost_function_test.cc b/internal/ceres/gradient_checking_cost_function_test.cc
new file mode 100644
index 0000000..cde613b
--- /dev/null
+++ b/internal/ceres/gradient_checking_cost_function_test.cc
@@ -0,0 +1,414 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+
+#include "ceres/gradient_checking_cost_function.h"
+
+#include <cmath>
+#include <vector>
+
+#include <glog/logging.h>
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "ceres/mock_log.h"
+#include "ceres/problem_impl.h"
+#include "ceres/program.h"
+#include "ceres/parameter_block.h"
+#include "ceres/residual_block.h"
+#include "ceres/random.h"
+#include "ceres/cost_function.h"
+#include "ceres/internal/scoped_ptr.h"
+#include "ceres/local_parameterization.h"
+#include "ceres/loss_function.h"
+#include "ceres/sized_cost_function.h"
+#include "ceres/types.h"
+
+using testing::AllOf;
+using testing::AnyNumber;
+using testing::HasSubstr;
+using testing::ScopedMockLog;
+using testing::_;
+
+namespace ceres {
+namespace internal {
+
+// Pick a (non-quadratic) function whose derivative are easy:
+//
+//    f = exp(- a' x).
+//   df = - f a.
+//
+// where 'a' is a vector of the same size as 'x'. In the block
+// version, they are both block vectors, of course.
+template<int bad_block = 1, int bad_variable = 2>
+class TestTerm : public CostFunction {
+ public:
+  // The constructor of this function needs to know the number
+  // of blocks desired, and the size of each block.
+  TestTerm(int arity, int const *dim) : arity_(arity) {
+    // Make 'arity' random vectors.
+    a_.resize(arity_);
+    for (int j = 0; j < arity_; ++j) {
+      a_[j].resize(dim[j]);
+      for (int u = 0; u < dim[j]; ++u) {
+        a_[j][u] = 2.0 * RandDouble() - 1.0;
+      }
+    }
+
+    for (int i = 0; i < arity_; i++) {
+      mutable_parameter_block_sizes()->push_back(dim[i]);
+    }
+    set_num_residuals(1);
+  }
+
+  bool Evaluate(double const* const* parameters,
+                double* residuals,
+                double** jacobians) const {
+    // Compute a . x.
+    double ax = 0;
+    for (int j = 0; j < arity_; ++j) {
+      for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
+        ax += a_[j][u] * parameters[j][u];
+      }
+    }
+
+    // This is the cost, but also appears as a factor
+    // in the derivatives.
+    double f = *residuals = exp(-ax);
+
+    // Accumulate 1st order derivatives.
+    if (jacobians) {
+      for (int j = 0; j < arity_; ++j) {
+        if (jacobians[j]) {
+          for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
+            // See comments before class.
+            jacobians[j][u] = - f * a_[j][u];
+
+            if (bad_block == j && bad_variable == u) {
+              // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry
+              // like what happens when users make an error in their jacobian
+              // computations. This should get detected.
+              LOG(INFO) << "Poisoning jacobian for parameter block " << j
+                        << ", row 0, column " << u;
+              jacobians[j][u] += 500;
+            }
+          }
+        }
+      }
+    }
+
+    return true;
+  }
+
+ private:
+  int arity_;
+  vector<vector<double> > a_;
+};
+
+TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) {
+  srand(5);
+
+  // Test with 3 blocks of size 2, 3 and 4.
+  int const arity = 3;
+  int const dim[arity] = { 2, 3, 4 };
+
+  // Make a random set of blocks.
+  vector<double*> parameters(arity);
+  for (int j = 0; j < arity; ++j) {
+    parameters[j] = new double[dim[j]];
+    for (int u = 0; u < dim[j]; ++u) {
+      parameters[j][u] = 2.0 * RandDouble() - 1.0;
+    }
+  }
+
+  double original_residual;
+  double residual;
+  vector<double*> original_jacobians(arity);
+  vector<double*> jacobians(arity);
+
+  for (int j = 0; j < arity; ++j) {
+    // Since residual is one dimensional the jacobians have the same
+    // size as the parameter blocks.
+    jacobians[j] = new double[dim[j]];
+    original_jacobians[j] = new double[dim[j]];
+  }
+
+  const double kRelativeStepSize = 1e-6;
+  const double kRelativePrecision = 1e-4;
+
+  TestTerm<-1, -1> term(arity, dim);
+  scoped_ptr<CostFunction> gradient_checking_cost_function(
+      CreateGradientCheckingCostFunction(&term,
+                                         kRelativeStepSize,
+                                         kRelativePrecision,
+                                         "Ignored."));
+  term.Evaluate(&parameters[0],
+                &original_residual,
+                &original_jacobians[0]);
+
+  gradient_checking_cost_function->Evaluate(&parameters[0],
+                                            &residual,
+                                            &jacobians[0]);
+  EXPECT_EQ(original_residual, residual);
+
+  for (int j = 0; j < arity; j++) {
+    for (int k = 0; k < dim[j]; ++k) {
+      EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]);
+    }
+
+    delete[] parameters[j];
+    delete[] jacobians[j];
+    delete[] original_jacobians[j];
+  }
+}
+
+TEST(GradientCheckingCostFunction, SmokeTest) {
+  srand(5);
+
+  // Test with 3 blocks of size 2, 3 and 4.
+  int const arity = 3;
+  int const dim[arity] = { 2, 3, 4 };
+
+  // Make a random set of blocks.
+  vector<double*> parameters(arity);
+  for (int j = 0; j < arity; ++j) {
+    parameters[j] = new double[dim[j]];
+    for (int u = 0; u < dim[j]; ++u) {
+      parameters[j][u] = 2.0 * RandDouble() - 1.0;
+    }
+  }
+
+  double residual;
+  vector<double*> jacobians(arity);
+  for (int j = 0; j < arity; ++j) {
+    // Since residual is one dimensional the jacobians have the same size as the
+    // parameter blocks.
+    jacobians[j] = new double[dim[j]];
+  }
+
+  const double kRelativeStepSize = 1e-6;
+  const double kRelativePrecision = 1e-4;
+
+  // Should have one term that's bad, causing everything to get dumped.
+  LOG(INFO) << "Bad gradient";
+  {
+    TestTerm<1, 2> term(arity, dim);
+    scoped_ptr<CostFunction> gradient_checking_cost_function(
+        CreateGradientCheckingCostFunction(&term,
+                                           kRelativeStepSize,
+                                           kRelativePrecision,
+                                           "Fuzzy bananas"));
+
+    ScopedMockLog log;
+    EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber());
+    EXPECT_CALL(log, Log(WARNING, _,
+                         AllOf(HasSubstr("(1,0,2) Relative error worse than"),
+                               HasSubstr("Fuzzy bananas"))));
+
+    gradient_checking_cost_function->Evaluate(&parameters[0],
+                                              &residual,
+                                              &jacobians[0]);
+  }
+
+  // The gradient is correct, so no errors are reported.
+  LOG(INFO) << "Good gradient";
+  {
+    TestTerm<-1, -1> term(arity, dim);
+    scoped_ptr<CostFunction> gradient_checking_cost_function(
+        CreateGradientCheckingCostFunction(&term,
+                                           kRelativeStepSize,
+                                           kRelativePrecision,
+                                           "Ignored."));
+
+    ScopedMockLog log;
+    EXPECT_CALL(log, Log(_, _, _)).Times(0);
+
+    gradient_checking_cost_function->Evaluate(&parameters[0],
+                                              &residual,
+                                              &jacobians[0]);
+  }
+
+  for (int j = 0; j < arity; j++) {
+    delete[] parameters[j];
+    delete[] jacobians[j];
+  }
+}
+
+// The following three classes are for the purposes of defining
+// function signatures. They have dummy Evaluate functions.
+
+// Trivial cost function that accepts a single argument.
+class UnaryCostFunction : public CostFunction {
+ public:
+  UnaryCostFunction(int num_residuals, int16 parameter_block_size) {
+    set_num_residuals(num_residuals);
+    mutable_parameter_block_sizes()->push_back(parameter_block_size);
+  }
+  virtual ~UnaryCostFunction() {}
+
+  virtual bool Evaluate(double const* const* parameters,
+                        double* residuals,
+                        double** jacobians) const {
+    for (int i = 0; i < num_residuals(); ++i) {
+      residuals[i] = 1;
+    }
+    return true;
+  }
+};
+
+// Trivial cost function that accepts two arguments.
+class BinaryCostFunction: public CostFunction {
+ public:
+  BinaryCostFunction(int num_residuals,
+                     int16 parameter_block1_size,
+                     int16 parameter_block2_size) {
+    set_num_residuals(num_residuals);
+    mutable_parameter_block_sizes()->push_back(parameter_block1_size);
+    mutable_parameter_block_sizes()->push_back(parameter_block2_size);
+  }
+
+  virtual bool Evaluate(double const* const* parameters,
+                        double* residuals,
+                        double** jacobians) const {
+    for (int i = 0; i < num_residuals(); ++i) {
+      residuals[i] = 2;
+    }
+    return true;
+  }
+};
+
+// Trivial cost function that accepts three arguments.
+class TernaryCostFunction: public CostFunction {
+ public:
+  TernaryCostFunction(int num_residuals,
+                      int16 parameter_block1_size,
+                      int16 parameter_block2_size,
+                      int16 parameter_block3_size) {
+    set_num_residuals(num_residuals);
+    mutable_parameter_block_sizes()->push_back(parameter_block1_size);
+    mutable_parameter_block_sizes()->push_back(parameter_block2_size);
+    mutable_parameter_block_sizes()->push_back(parameter_block3_size);
+  }
+
+  virtual bool Evaluate(double const* const* parameters,
+                        double* residuals,
+                        double** jacobians) const {
+    for (int i = 0; i < num_residuals(); ++i) {
+      residuals[i] = 3;
+    }
+    return true;
+  }
+};
+
+// Verify that the two ParameterBlocks are formed from the same user
+// array and have the same LocalParameterization object.
+void ParameterBlocksAreEquivalent(const ParameterBlock*  left,
+                                  const ParameterBlock* right) {
+  CHECK_NOTNULL(left);
+  CHECK_NOTNULL(right);
+  EXPECT_EQ(left->user_state(), right->user_state());
+  EXPECT_EQ(left->Size(), right->Size());
+  EXPECT_EQ(left->Size(), right->Size());
+  EXPECT_EQ(left->LocalSize(), right->LocalSize());
+  EXPECT_EQ(left->local_parameterization(), right->local_parameterization());
+  EXPECT_EQ(left->IsConstant(), right->IsConstant());
+}
+
+TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) {
+  double x[3], y[4], z[5], w[4];
+
+  ProblemImpl problem_impl;
+  problem_impl.AddParameterBlock(x, 3);
+  problem_impl.AddParameterBlock(y, 4);
+  problem_impl.SetParameterBlockConstant(y);
+  problem_impl.AddParameterBlock(z, 5);
+  problem_impl.AddParameterBlock(w, 4, new QuaternionParameterization);
+  problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x);
+  problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4) ,
+                                NULL, z, y);
+  problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5),
+                                new TrivialLoss, x, z);
+  problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3),
+                                NULL, z, x);
+  problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4),
+                                NULL, z, x, y);
+
+  scoped_ptr<ProblemImpl> gradient_checking_problem_impl(
+      CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0));
+
+  // The dimensions of the two problems match.
+  EXPECT_EQ(problem_impl.NumParameterBlocks(),
+            gradient_checking_problem_impl->NumParameterBlocks());
+  EXPECT_EQ(problem_impl.NumResidualBlocks(),
+            gradient_checking_problem_impl->NumResidualBlocks());
+
+  EXPECT_EQ(problem_impl.NumParameters(),
+            gradient_checking_problem_impl->NumParameters());
+  EXPECT_EQ(problem_impl.NumResiduals(),
+            gradient_checking_problem_impl->NumResiduals());
+
+  const Program& program = problem_impl.program();
+  const Program& gradient_checking_program =
+      gradient_checking_problem_impl->program();
+
+  // Since we added the ParameterBlocks and ResidualBlocks explicitly,
+  // they should be in the same order in the two programs. It is
+  // possible that may change due to implementation changes to
+  // Program. This is not exepected to be the case and writing code to
+  // anticipate that possibility not worth the extra complexity in
+  // this test.
+  for (int i = 0; i < program.parameter_blocks().size(); ++i) {
+    ParameterBlocksAreEquivalent(
+        program.parameter_blocks()[i],
+        gradient_checking_program.parameter_blocks()[i]);
+  }
+
+  for (int i = 0; i < program.residual_blocks().size(); ++i) {
+    // Compare the sizes of the two ResidualBlocks.
+    const ResidualBlock* original_residual_block =
+        program.residual_blocks()[i];
+    const ResidualBlock* new_residual_block =
+        gradient_checking_program.residual_blocks()[i];
+    EXPECT_EQ(original_residual_block->NumParameterBlocks(),
+              new_residual_block->NumParameterBlocks());
+    EXPECT_EQ(original_residual_block->NumResiduals(),
+              new_residual_block->NumResiduals());
+    EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(),
+              new_residual_block->NumScratchDoublesForEvaluate());
+
+    // Verify that the ParameterBlocks for the two residuals are equivalent.
+    for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) {
+      ParameterBlocksAreEquivalent(
+          original_residual_block->parameter_blocks()[j],
+          new_residual_block->parameter_blocks()[j]);
+    }
+  }
+}
+
+}  // namespace internal
+}  // namespace ceres