Initial commit of Ceres Solver.
diff --git a/internal/ceres/linear_solver.h b/internal/ceres/linear_solver.h
new file mode 100644
index 0000000..d287813
--- /dev/null
+++ b/internal/ceres/linear_solver.h
@@ -0,0 +1,291 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+//
+// Abstract interface for objects solving linear systems of various
+// kinds.
+
+#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
+#define CERES_INTERNAL_LINEAR_SOLVER_H_
+
+#include <cstddef>
+
+#include <glog/logging.h>
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/casts.h"
+#include "ceres/compressed_row_sparse_matrix.h"
+#include "ceres/dense_sparse_matrix.h"
+#include "ceres/triplet_sparse_matrix.h"
+#include "ceres/types.h"
+
+namespace ceres {
+namespace internal {
+
+class LinearOperator;
+
+// Abstract base class for objects that implement algorithms for
+// solving linear systems
+//
+//   Ax = b
+//
+// It is expected that a single instance of a LinearSolver object
+// maybe used multiple times for solving different linear
+// systems. This allows them to cache and reuse information across
+// solves if for example the sparsity of the linear system remains
+// constant.
+//
+// Subclasses of LinearSolver use two structs to configure themselves.
+// The Options struct configures the LinearSolver object for its
+// lifetime. The PerSolveOptions struct is used to specify options for
+// a particular Solve call.
+class LinearSolver {
+ public:
+  struct Options {
+    Options()
+        : type(SPARSE_NORMAL_CHOLESKY),
+          preconditioner_type(JACOBI),
+          min_num_iterations(1),
+          max_num_iterations(1),
+          num_threads(1),
+          constant_sparsity(false),
+          num_eliminate_blocks(0),
+          residual_reset_period(10),
+          row_block_size(Dynamic),
+          e_block_size(Dynamic),
+          f_block_size(Dynamic) {
+    }
+
+    LinearSolverType type;
+
+    PreconditionerType preconditioner_type;
+
+    // Number of internal iterations that the solver uses. This
+    // parameter only makes sense for iterative solvers like CG.
+    int min_num_iterations;
+    int max_num_iterations;
+
+    // If possible, how many threads can the solver use.
+    int num_threads;
+
+    // If possible cache and reuse the symbolic factorization across
+    // multiple calls.
+    bool constant_sparsity;
+
+    // Eliminate 0 to num_eliminate_blocks - 1 from the Normal
+    // equations to form a schur complement. Only used by the Schur
+    // complement based solver. The most common use for this parameter
+    // is in the case of structure from motion problems where we have
+    // camera blocks and point blocks. Then setting the
+    // num_eliminate_blocks to the number of points allows the solver
+    // to use the Schur complement trick. For more details see the
+    // description of this parameter in solver.h.
+    int num_eliminate_blocks;
+
+    // Iterative solvers, e.g. Preconditioned Conjugate Gradients
+    // maintain a cheap estimate of the residual which may become
+    // inaccurate over time. Thus for non-zero values of this
+    // parameter, the solver can be told to recalculate the value of
+    // the residual using a |b - Ax| evaluation.
+    int residual_reset_period;
+
+    // If the block sizes in a BlockSparseMatrix are fixed, then in
+    // some cases the Schur complement based solvers can detect and
+    // specialize on them.
+    //
+    // It is expected that these parameters are set programmatically
+    // rather than manually.
+    //
+    // Please see explicit_schur_complement_solver_impl.h for more
+    // details.
+    int row_block_size;
+    int e_block_size;
+    int f_block_size;
+  };
+
+  // Options for the Solve method.
+  struct PerSolveOptions {
+    PerSolveOptions()
+        : D(NULL),
+          preconditioner(NULL),
+          r_tolerance(0.0),
+          q_tolerance(0.0) {
+    }
+
+    // This option only makes sense for unsymmetric linear solvers
+    // that can solve rectangular linear systems.
+    //
+    // Given a matrix A, an optional diagonal matrix D as a vector,
+    // and a vector b, the linear solver will solve for
+    //
+    //   | A | x = | b |
+    //   | D |     | 0 |
+    //
+    // If D is null, then it is treated as zero, and the solver returns
+    // the solution to
+    //
+    //   A x = b
+    //
+    // In either case, x is the vector that solves the following
+    // optimization problem.
+    //
+    //   arg min_x ||Ax -b||^2 + ||Dx||^2
+    //
+    // Here A is a matrix of size m x n, with full column rank. If A
+    // does not have full column rank, the results returned by the
+    // solver cannot be relied on. D, if it is not null is an array of
+    // size n.  b is an array of size m and x is an array of size n.
+    double * D;
+
+    // This option only makes sense for iterative solvers.
+    //
+    // In general the performance of an iterative linear solver
+    // depends on the condition number of the matrix A. For example
+    // the convergence rate of the conjugate gradients algorithm
+    // is proportional to the square root of the condition number.
+    //
+    // One particularly useful technique for improving the
+    // conditioning of a linear system is to precondition it. In its
+    // simplest form a preconditioner is a matrix M such that instead
+    // of solving Ax = b, we solve the linear system AM^{-1} y = b
+    // instead, where M is such that the condition number k(AM^{-1})
+    // is smaller than the conditioner k(A). Given the solution to
+    // this system, x = M^{-1} y. The iterative solver takes care of
+    // the mechanics of solving the preconditioned system and
+    // returning the corrected solution x. The user only needs to
+    // supply a linear operator.
+    //
+    // A null preconditioner is equivalent to an identity matrix being
+    // used a preconditioner.
+    LinearOperator* preconditioner;
+
+
+    // The following tolerance related options only makes sense for
+    // iterative solvers. Direct solvers ignore them.
+
+    // Solver terminates when
+    //
+    //   |Ax - b| <= r_tolerance * |b|.
+    //
+    // This is the most commonly used termination criterion for
+    // iterative solvers.
+    double r_tolerance;
+
+    // For PSD matrices A, let
+    //
+    //   Q(x) = x'Ax - 2b'x
+    //
+    // be the cost of the quadratic function defined by A and b. Then,
+    // the solver terminates at iteration i if
+    //
+    //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
+    //
+    // This termination criterion is more useful when using CG to
+    // solve the Newton step. This particular convergence test comes
+    // from Stephen Nash's work on truncated Newton
+    // methods. References:
+    //
+    //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
+    //      Direction Within A Truncated Newton Method, Operation
+    //      Research Letters 9(1990) 219-221.
+    //
+    //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
+    //      Journal of Computational and Applied Mathematics,
+    //      124(1-2), 45-59, 2000.
+    //
+    double q_tolerance;
+  };
+
+  // Summary of a call to the Solve method. We should move away from
+  // the true/false method for determining solver success. We should
+  // let the summary object do the talking.
+  struct Summary {
+    Summary()
+        : residual_norm(0.0),
+          num_iterations(-1),
+          termination_type(FAILURE) {
+    }
+
+    double residual_norm;
+    int num_iterations;
+    LinearSolverTerminationType termination_type;
+  };
+
+  virtual ~LinearSolver();
+
+  // Solve Ax = b.
+  virtual Summary Solve(LinearOperator* A,
+                        const double* b,
+                        const PerSolveOptions& per_solve_options,
+                        double* x) = 0;
+
+  static LinearSolver* Create(const Options& options);
+};
+
+// This templated subclass of LinearSolver serves as a base class for
+// other linear solvers that depend on the particular matrix layout of
+// the underlying linear operator. For example some linear solvers
+// need low level access to the TripletSparseMatrix implementing the
+// LinearOperator interface. This class hides those implementation
+// details behind a private virtual method, and has the Solve method
+// perform the necessary upcasting.
+template <typename MatrixType>
+class TypedLinearSolver : public LinearSolver {
+ public:
+  virtual ~TypedLinearSolver() {}
+  virtual LinearSolver::Summary Solve(
+      LinearOperator* A,
+      const double* b,
+      const LinearSolver::PerSolveOptions& per_solve_options,
+      double* x) {
+    CHECK_NOTNULL(A);
+    CHECK_NOTNULL(b);
+    CHECK_NOTNULL(x);
+    return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
+  }
+
+ private:
+  virtual LinearSolver::Summary SolveImpl(
+      MatrixType* A,
+      const double* b,
+      const LinearSolver::PerSolveOptions& per_solve_options,
+      double* x) = 0;
+};
+
+// Linear solvers that depend on acccess to the low level structure of
+// a SparseMatrix.
+typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
+typedef TypedLinearSolver<BlockSparseMatrixBase>     BlockSparseMatrixBaseSolver;      // NOLINT
+typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
+typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
+typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
+
+}  // namespace internal
+}  // namespace ceres
+
+#endif  // CERES_INTERNAL_LINEAR_SOLVER_H_