Initial commit of Ceres Solver.
diff --git a/internal/ceres/schur_complement_solver.cc b/internal/ceres/schur_complement_solver.cc
new file mode 100644
index 0000000..2bc8cdd
--- /dev/null
+++ b/internal/ceres/schur_complement_solver.cc
@@ -0,0 +1,285 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include <algorithm>
+#include <ctime>
+#include <set>
+#include <vector>
+#include "Eigen/Dense"
+#include "ceres/block_random_access_dense_matrix.h"
+#include "ceres/block_random_access_matrix.h"
+#include "ceres/block_random_access_sparse_matrix.h"
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/block_structure.h"
+#include "ceres/detect_structure.h"
+#include "ceres/linear_solver.h"
+#include "ceres/schur_complement_solver.h"
+#include "ceres/suitesparse.h"
+#include "ceres/triplet_sparse_matrix.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/internal/port.h"
+#include "ceres/internal/scoped_ptr.h"
+#include "ceres/types.h"
+
+namespace ceres {
+namespace internal {
+
+LinearSolver::Summary SchurComplementSolver::SolveImpl(
+    BlockSparseMatrixBase* A,
+    const double* b,
+    const LinearSolver::PerSolveOptions& per_solve_options,
+    double* x) {
+  const time_t start_time = time(NULL);
+  if (!options_.constant_sparsity || (eliminator_.get() == NULL)) {
+    InitStorage(A->block_structure());
+    DetectStructure(*A->block_structure(),
+                    options_.num_eliminate_blocks,
+                    &options_.row_block_size,
+                    &options_.e_block_size,
+                    &options_.f_block_size);
+    eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
+    eliminator_->Init(options_.num_eliminate_blocks, A->block_structure());
+  };
+  const time_t init_time = time(NULL);
+  fill(x, x + A->num_cols(), 0.0);
+
+  LinearSolver::Summary summary;
+  summary.num_iterations = 1;
+  summary.termination_type = FAILURE;
+  eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
+  const time_t eliminate_time = time(NULL);
+
+  double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
+  const bool status = SolveReducedLinearSystem(reduced_solution);
+  const time_t solve_time = time(NULL);
+
+  if (!status) {
+    return summary;
+  }
+
+  eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
+  const time_t backsubstitute_time = time(NULL);
+  summary.termination_type = TOLERANCE;
+
+  VLOG(2) << "time (sec) total: " << backsubstitute_time - start_time
+          << " init: " << init_time - start_time
+          << " eliminate: " << eliminate_time - init_time
+          << " solve: " << solve_time - eliminate_time
+          << " backsubstitute: " << backsubstitute_time - solve_time;
+  return summary;
+}
+
+// Initialize a BlockRandomAccessDenseMatrix to store the Schur
+// complement.
+void DenseSchurComplementSolver::InitStorage(
+    const CompressedRowBlockStructure* bs) {
+  const int num_eliminate_blocks = options().num_eliminate_blocks;
+  const int num_col_blocks = bs->cols.size();
+
+  vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
+  for (int i = num_eliminate_blocks, j = 0;
+       i < num_col_blocks;
+       ++i, ++j) {
+    blocks[j] = bs->cols[i].size;
+  }
+
+  set_lhs(new BlockRandomAccessDenseMatrix(blocks));
+  set_rhs(new double[lhs()->num_rows()]);
+}
+
+// Solve the system Sx = r, assuming that the matrix S is stored in a
+// BlockRandomAccessDenseMatrix. The linear system is solved using
+// Eigen's Cholesky factorization.
+bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
+  const BlockRandomAccessDenseMatrix* m =
+      down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
+  const int num_rows = m->num_rows();
+
+  // The case where there are no f blocks, and the system is block
+  // diagonal.
+  if (num_rows == 0) {
+    return true;
+  }
+
+  // TODO(sameeragarwal): Add proper error handling; this completely ignores
+  // the quality of the solution to the solve.
+  VectorRef(solution, num_rows) =
+      ConstMatrixRef(m->values(), num_rows, num_rows)
+      .selfadjointView<Eigen::Upper>()
+      .ldlt()
+      .solve(ConstVectorRef(rhs(), num_rows));
+
+  return true;
+}
+
+#ifndef CERES_NO_SUITESPARSE
+SparseSchurComplementSolver::SparseSchurComplementSolver(
+    const LinearSolver::Options& options)
+    : SchurComplementSolver(options),
+      symbolic_factor_(NULL) {
+}
+
+SparseSchurComplementSolver::~SparseSchurComplementSolver() {
+  if (symbolic_factor_ != NULL) {
+    ss_.Free(symbolic_factor_);
+    symbolic_factor_ = NULL;
+  }
+}
+
+// Determine the non-zero blocks in the Schur Complement matrix, and
+// initialize a BlockRandomAccessSparseMatrix object.
+void SparseSchurComplementSolver::InitStorage(
+    const CompressedRowBlockStructure* bs) {
+  const int num_eliminate_blocks = options().num_eliminate_blocks;
+  const int num_col_blocks = bs->cols.size();
+  const int num_row_blocks = bs->rows.size();
+
+  vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
+  for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
+    blocks[i - num_eliminate_blocks] = bs->cols[i].size;
+  }
+
+  set<pair<int, int> > block_pairs;
+  for (int i = 0; i < blocks.size(); ++i) {
+    block_pairs.insert(make_pair(i, i));
+  }
+
+  int r = 0;
+  while (r < num_row_blocks) {
+    int e_block_id = bs->rows[r].cells.front().block_id;
+    if (e_block_id >= num_eliminate_blocks) {
+      break;
+    }
+    vector<int> f_blocks;
+
+    // Add to the chunk until the first block in the row is
+    // different than the one in the first row for the chunk.
+    for (; r < num_row_blocks; ++r) {
+      const CompressedRow& row = bs->rows[r];
+      if (row.cells.front().block_id != e_block_id) {
+        break;
+      }
+
+      // Iterate over the blocks in the row, ignoring the first
+      // block since it is the one to be eliminated.
+      for (int c = 1; c < row.cells.size(); ++c) {
+        const Cell& cell = row.cells[c];
+        f_blocks.push_back(cell.block_id - num_eliminate_blocks);
+      }
+    }
+
+    sort(f_blocks.begin(), f_blocks.end());
+    f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
+    for (int i = 0; i < f_blocks.size(); ++i) {
+      for (int j = i + 1; j < f_blocks.size(); ++j) {
+        block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
+      }
+    }
+  }
+
+  // Remaing rows do not contribute to the chunks and directly go
+  // into the schur complement via an outer product.
+  for (; r < num_row_blocks; ++r) {
+    const CompressedRow& row = bs->rows[r];
+    CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
+    for (int i = 0; i < row.cells.size(); ++i) {
+      int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
+      for (int j = 0; j < row.cells.size(); ++j) {
+        int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
+        if (r_block1_id <= r_block2_id) {
+          block_pairs.insert(make_pair(r_block1_id, r_block2_id));
+        }
+      }
+    }
+  }
+
+  set_lhs(new BlockRandomAccessSparseMatrix(blocks, block_pairs));
+  set_rhs(new double[lhs()->num_rows()]);
+}
+
+// Solve the system Sx = r, assuming that the matrix S is stored in a
+// BlockRandomAccessSparseMatrix.  The linear system is solved using
+// CHOLMOD's sparse cholesky factorization routines.
+bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
+  // Extract the TripletSparseMatrix that is used for actually storing S.
+  TripletSparseMatrix* tsm =
+      const_cast<TripletSparseMatrix*>(
+          down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
+
+  const int num_rows = tsm->num_rows();
+
+  // The case where there are no f blocks, and the system is block
+  // diagonal.
+  if (num_rows == 0) {
+    return true;
+  }
+
+  cholmod_sparse* cholmod_lhs = ss_.CreateSparseMatrix(tsm);
+  // The matrix is symmetric, and the upper triangular part of the
+  // matrix contains the values.
+  cholmod_lhs->stype = 1;
+
+  cholmod_dense*  cholmod_rhs =
+      ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
+
+  // Symbolic factorization is computed if we don't already have one handy.
+  if (symbolic_factor_ == NULL) {
+    symbolic_factor_ = ss_.AnalyzeCholesky(cholmod_lhs);
+  }
+
+  cholmod_dense* cholmod_solution =
+      ss_.SolveCholesky(cholmod_lhs, symbolic_factor_, cholmod_rhs);
+
+  ss_.Free(cholmod_lhs);
+  cholmod_lhs = NULL;
+  ss_.Free(cholmod_rhs);
+  cholmod_rhs = NULL;
+
+  // If sparsity is not constant across calls, then reset the symbolic
+  // factorization.
+  if (!options().constant_sparsity) {
+    ss_.Free(symbolic_factor_);
+    symbolic_factor_ = NULL;
+  }
+
+  if (cholmod_solution == NULL) {
+    LOG(ERROR) << "CHOLMOD solve failed.";
+    return false;
+  }
+
+  VectorRef(solution, num_rows)
+      = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
+  ss_.Free(cholmod_solution);
+  return true;
+}
+#endif  // CERES_NO_SUITESPARSE
+
+}  // namespace internal
+}  // namespace ceres