Initial commit of Ceres Solver.
diff --git a/internal/ceres/solver_impl.cc b/internal/ceres/solver_impl.cc
new file mode 100644
index 0000000..ff2f5ea
--- /dev/null
+++ b/internal/ceres/solver_impl.cc
@@ -0,0 +1,699 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+
+#include "ceres/solver_impl.h"
+
+#include <iostream> // NOLINT
+#include <numeric>
+#include "ceres/evaluator.h"
+#include "ceres/gradient_checking_cost_function.h"
+#include "ceres/levenberg_marquardt.h"
+#include "ceres/linear_solver.h"
+#include "ceres/map_util.h"
+#include "ceres/minimizer.h"
+#include "ceres/parameter_block.h"
+#include "ceres/problem_impl.h"
+#include "ceres/program.h"
+#include "ceres/residual_block.h"
+#include "ceres/schur_ordering.h"
+#include "ceres/stringprintf.h"
+#include "ceres/iteration_callback.h"
+#include "ceres/problem.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+void EvaluateCostAndResiduals(ProblemImpl* problem_impl,
+ double* cost,
+ vector<double>* residuals) {
+ CHECK_NOTNULL(cost);
+ Program* program = CHECK_NOTNULL(problem_impl)->mutable_program();
+ if (residuals != NULL) {
+ residuals->resize(program->NumResiduals());
+ program->Evaluate(cost, &(*residuals)[0]);
+ } else {
+ program->Evaluate(cost, NULL);
+ }
+}
+
+// Callback for updating the user's parameter blocks. Updates are only
+// done if the step is successful.
+class StateUpdatingCallback : public IterationCallback {
+ public:
+ StateUpdatingCallback(Program* program, double* parameters)
+ : program_(program), parameters_(parameters) {}
+
+ CallbackReturnType operator()(const IterationSummary& summary) {
+ if (summary.step_is_successful) {
+ program_->StateVectorToParameterBlocks(parameters_);
+ program_->CopyParameterBlockStateToUserState();
+ }
+ return SOLVER_CONTINUE;
+ }
+
+ private:
+ Program* program_;
+ double* parameters_;
+};
+
+// Callback for logging the state of the minimizer to STDERR or STDOUT
+// depending on the user's preferences and logging level.
+class LoggingCallback : public IterationCallback {
+ public:
+ explicit LoggingCallback(bool log_to_stdout)
+ : log_to_stdout_(log_to_stdout) {}
+
+ ~LoggingCallback() {}
+
+ CallbackReturnType operator()(const IterationSummary& summary) {
+ const char* kReportRowFormat =
+ "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
+ "rho:% 3.2e mu:% 3.2e li:% 3d";
+ string output = StringPrintf(kReportRowFormat,
+ summary.iteration,
+ summary.cost,
+ summary.cost_change,
+ summary.gradient_max_norm,
+ summary.step_norm,
+ summary.relative_decrease,
+ summary.mu,
+ summary.linear_solver_iterations);
+ if (log_to_stdout_) {
+ cout << output << endl;
+ } else {
+ VLOG(1) << output;
+ }
+ return SOLVER_CONTINUE;
+ }
+
+ private:
+ const bool log_to_stdout_;
+};
+
+} // namespace
+
+void SolverImpl::Minimize(const Solver::Options& options,
+ Program* program,
+ Evaluator* evaluator,
+ LinearSolver* linear_solver,
+ double* initial_parameters,
+ double* final_parameters,
+ Solver::Summary* summary) {
+ Minimizer::Options minimizer_options(options);
+
+ LoggingCallback logging_callback(options.minimizer_progress_to_stdout);
+ if (options.logging_type != SILENT) {
+ minimizer_options.callbacks.push_back(&logging_callback);
+ }
+
+ StateUpdatingCallback updating_callback(program, initial_parameters);
+ if (options.update_state_every_iteration) {
+ minimizer_options.callbacks.push_back(&updating_callback);
+ }
+
+ LevenbergMarquardt levenberg_marquardt;
+
+ time_t start_minimizer_time_seconds = time(NULL);
+ levenberg_marquardt.Minimize(minimizer_options,
+ evaluator,
+ linear_solver,
+ initial_parameters,
+ final_parameters,
+ summary);
+ summary->minimizer_time_in_seconds =
+ time(NULL) - start_minimizer_time_seconds;
+}
+
+void SolverImpl::Solve(const Solver::Options& original_options,
+ Problem* problem,
+ Solver::Summary* summary) {
+ Solver::Options options(original_options);
+
+#ifndef CERES_USE_OPENMP
+ if (options.num_threads > 1) {
+ LOG(WARNING)
+ << "OpenMP support is not compiled into this binary; "
+ << "only options.num_threads=1 is supported. Switching"
+ << "to single threaded mode.";
+ options.num_threads = 1;
+ }
+ if (options.num_linear_solver_threads > 1) {
+ LOG(WARNING)
+ << "OpenMP support is not compiled into this binary; "
+ << "only options.num_linear_solver_threads=1 is supported. Switching"
+ << "to single threaded mode.";
+ options.num_linear_solver_threads = 1;
+ }
+#endif
+
+ // Reset the summary object to its default values;
+ *CHECK_NOTNULL(summary) = Solver::Summary();
+ summary->linear_solver_type_given = options.linear_solver_type;
+ summary->num_eliminate_blocks_given = original_options.num_eliminate_blocks;
+ summary->num_threads_given = original_options.num_threads;
+ summary->num_linear_solver_threads_given =
+ original_options.num_linear_solver_threads;
+ summary->ordering_type = original_options.ordering_type;
+
+ ProblemImpl* problem_impl = CHECK_NOTNULL(problem)->problem_impl_.get();
+
+ summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
+ summary->num_parameters = problem_impl->NumParameters();
+ summary->num_residual_blocks = problem_impl->NumResidualBlocks();
+ summary->num_residuals = problem_impl->NumResiduals();
+
+ summary->num_threads_used = options.num_threads;
+
+ // Evaluate the initial cost and residual vector (if needed). The
+ // initial cost needs to be computed on the original unpreprocessed
+ // problem, as it is used to determine the value of the "fixed" part
+ // of the objective function after the problem has undergone
+ // reduction. Also the initial residuals are in the order in which
+ // the user added the ResidualBlocks to the optimization problem.
+ EvaluateCostAndResiduals(problem_impl,
+ &summary->initial_cost,
+ options.return_initial_residuals
+ ? &summary->initial_residuals
+ : NULL);
+
+ // If the user requests gradient checking, construct a new
+ // ProblemImpl by wrapping the CostFunctions of problem_impl inside
+ // GradientCheckingCostFunction and replacing problem_impl with
+ // gradient_checking_problem_impl.
+ scoped_ptr<ProblemImpl> gradient_checking_problem_impl;
+ if (options.check_gradients) {
+ VLOG(1) << "Checking Gradients";
+ gradient_checking_problem_impl.reset(
+ CreateGradientCheckingProblemImpl(
+ problem_impl,
+ options.numeric_derivative_relative_step_size,
+ options.gradient_check_relative_precision));
+
+ // From here on, problem_impl will point to the GradientChecking version.
+ problem_impl = gradient_checking_problem_impl.get();
+ }
+
+ // Create the three objects needed to minimize: the transformed program, the
+ // evaluator, and the linear solver.
+
+ scoped_ptr<Program> reduced_program(
+ CreateReducedProgram(&options, problem_impl, &summary->error));
+ if (reduced_program == NULL) {
+ return;
+ }
+
+ summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
+ summary->num_parameters_reduced = reduced_program->NumParameters();
+ summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
+ summary->num_residuals_reduced = reduced_program->NumResiduals();
+
+ scoped_ptr<LinearSolver>
+ linear_solver(CreateLinearSolver(&options, &summary->error));
+ summary->linear_solver_type_used = options.linear_solver_type;
+ summary->preconditioner_type = options.preconditioner_type;
+ summary->num_eliminate_blocks_used = options.num_eliminate_blocks;
+ summary->num_linear_solver_threads_used = options.num_linear_solver_threads;
+
+ if (linear_solver == NULL) {
+ return;
+ }
+
+ if (!MaybeReorderResidualBlocks(options,
+ reduced_program.get(),
+ &summary->error)) {
+ return;
+ }
+
+ scoped_ptr<Evaluator> evaluator(
+ CreateEvaluator(options, reduced_program.get(), &summary->error));
+ if (evaluator == NULL) {
+ return;
+ }
+
+ // The optimizer works on contiguous parameter vectors; allocate some.
+ Vector initial_parameters(reduced_program->NumParameters());
+ Vector optimized_parameters(reduced_program->NumParameters());
+
+ // Collect the discontiguous parameters into a contiguous state vector.
+ reduced_program->ParameterBlocksToStateVector(&initial_parameters[0]);
+
+ // Run the optimization.
+ Minimize(options,
+ reduced_program.get(),
+ evaluator.get(),
+ linear_solver.get(),
+ initial_parameters.data(),
+ optimized_parameters.data(),
+ summary);
+
+ // If the user aborted mid-optimization or the optimization
+ // terminated because of a numerical failure, then return without
+ // updating user state.
+ if (summary->termination_type == USER_ABORT ||
+ summary->termination_type == NUMERICAL_FAILURE) {
+ return;
+ }
+
+ // Push the contiguous optimized parameters back to the user's parameters.
+ reduced_program->StateVectorToParameterBlocks(&optimized_parameters[0]);
+ reduced_program->CopyParameterBlockStateToUserState();
+
+ // Return the final cost and residuals for the original problem.
+ EvaluateCostAndResiduals(problem->problem_impl_.get(),
+ &summary->final_cost,
+ options.return_final_residuals
+ ? &summary->final_residuals
+ : NULL);
+
+ // Stick a fork in it, we're done.
+ return;
+}
+
+// Strips varying parameters and residuals, maintaining order, and updating
+// num_eliminate_blocks.
+bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
+ int* num_eliminate_blocks,
+ string* error) {
+ int original_num_eliminate_blocks = *num_eliminate_blocks;
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+
+ // Mark all the parameters as unused. Abuse the index member of the parameter
+ // blocks for the marking.
+ for (int i = 0; i < parameter_blocks->size(); ++i) {
+ (*parameter_blocks)[i]->set_index(-1);
+ }
+
+ // Filter out residual that have all-constant parameters, and mark all the
+ // parameter blocks that appear in residuals.
+ {
+ vector<ResidualBlock*>* residual_blocks =
+ program->mutable_residual_blocks();
+ int j = 0;
+ for (int i = 0; i < residual_blocks->size(); ++i) {
+ ResidualBlock* residual_block = (*residual_blocks)[i];
+ int num_parameter_blocks = residual_block->NumParameterBlocks();
+
+ // Determine if the residual block is fixed, and also mark varying
+ // parameters that appear in the residual block.
+ bool all_constant = true;
+ for (int k = 0; k < num_parameter_blocks; k++) {
+ ParameterBlock* parameter_block = residual_block->parameter_blocks()[k];
+ if (!parameter_block->IsConstant()) {
+ all_constant = false;
+ parameter_block->set_index(1);
+ }
+ }
+
+ if (!all_constant) {
+ (*residual_blocks)[j++] = (*residual_blocks)[i];
+ }
+ }
+ residual_blocks->resize(j);
+ }
+
+ // Filter out unused or fixed parameter blocks, and update
+ // num_eliminate_blocks as necessary.
+ {
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+ int j = 0;
+ for (int i = 0; i < parameter_blocks->size(); ++i) {
+ ParameterBlock* parameter_block = (*parameter_blocks)[i];
+ if (parameter_block->index() == 1) {
+ (*parameter_blocks)[j++] = parameter_block;
+ } else if (i < original_num_eliminate_blocks) {
+ (*num_eliminate_blocks)--;
+ }
+ }
+ parameter_blocks->resize(j);
+ }
+
+ CHECK(((program->NumResidualBlocks() == 0) &&
+ (program->NumParameterBlocks() == 0)) ||
+ ((program->NumResidualBlocks() != 0) &&
+ (program->NumParameterBlocks() != 0)))
+ << "Congratulations, you found a bug in Ceres. Please report it.";
+ return true;
+}
+
+Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
+ ProblemImpl* problem_impl,
+ string* error) {
+ Program* original_program = problem_impl->mutable_program();
+ scoped_ptr<Program> transformed_program(new Program(*original_program));
+
+ if (options->ordering_type == USER &&
+ !ApplyUserOrdering(*problem_impl,
+ options->ordering,
+ transformed_program.get(),
+ error)) {
+ return NULL;
+ }
+
+ if (options->ordering_type == SCHUR && options->num_eliminate_blocks != 0) {
+ *error = "Can't specify SCHUR ordering and num_eliminate_blocks "
+ "at the same time; SCHUR ordering determines "
+ "num_eliminate_blocks automatically.";
+ return NULL;
+ }
+
+ if (options->ordering_type == SCHUR && options->ordering.size() != 0) {
+ *error = "Can't specify SCHUR ordering type and the ordering "
+ "vector at the same time; SCHUR ordering determines "
+ "a suitable parameter ordering automatically.";
+ return NULL;
+ }
+
+ int num_eliminate_blocks = options->num_eliminate_blocks;
+
+ if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
+ &num_eliminate_blocks,
+ error)) {
+ return NULL;
+ }
+
+ if (transformed_program->NumParameterBlocks() == 0) {
+ LOG(WARNING) << "No varying parameter blocks to optimize; "
+ << "bailing early.";
+ return transformed_program.release();
+ }
+
+ if (options->ordering_type == SCHUR) {
+ vector<ParameterBlock*> schur_ordering;
+ num_eliminate_blocks = ComputeSchurOrdering(*transformed_program,
+ &schur_ordering);
+ CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Replace the transformed program's ordering with the schur ordering.
+ swap(*transformed_program->mutable_parameter_blocks(), schur_ordering);
+ }
+ options->num_eliminate_blocks = num_eliminate_blocks;
+ CHECK_GE(options->num_eliminate_blocks, 0)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Since the transformed program is the "active" program, and it is mutated,
+ // update the parameter offsets and indices.
+ transformed_program->SetParameterOffsetsAndIndex();
+ return transformed_program.release();
+}
+
+LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
+ string* error) {
+ if (options->linear_solver_type == CONJUGATE_GRADIENTS) {
+ *error = "CONJUGATE_GRADIENTS is not a valid solver for "
+ "linear least squares problems.";
+ return NULL;
+ }
+
+#ifdef CERES_NO_SUITESPARSE
+ if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY because SuiteSparse was not "
+ "enabled when Ceres was built.";
+ return NULL;
+ }
+#endif // CERES_NO_SUITESPARSE
+
+ if (options->linear_solver_max_num_iterations <= 0) {
+ *error = "Solver::Options::linear_solver_max_num_iterations is 0.";
+ return NULL;
+ }
+ if (options->linear_solver_min_num_iterations <= 0) {
+ *error = "Solver::Options::linear_solver_min_num_iterations is 0.";
+ return NULL;
+ }
+ if (options->linear_solver_min_num_iterations >
+ options->linear_solver_max_num_iterations) {
+ *error = "Solver::Options::linear_solver_min_num_iterations > "
+ "Solver::Options::linear_solver_max_num_iterations.";
+ return NULL;
+ }
+
+ LinearSolver::Options linear_solver_options;
+ linear_solver_options.constant_sparsity = true;
+ linear_solver_options.min_num_iterations =
+ options->linear_solver_min_num_iterations;
+ linear_solver_options.max_num_iterations =
+ options->linear_solver_max_num_iterations;
+ linear_solver_options.type = options->linear_solver_type;
+ linear_solver_options.preconditioner_type = options->preconditioner_type;
+
+#ifdef CERES_NO_SUITESPARSE
+ if (linear_solver_options.preconditioner_type == SCHUR_JACOBI) {
+ *error = "SCHUR_JACOBI preconditioner not suppored. Please build Ceres "
+ "with SuiteSparse support";
+ return NULL;
+ }
+
+ if (linear_solver_options.preconditioner_type == CLUSTER_JACOBI) {
+ *error = "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres "
+ "with SuiteSparse support";
+ return NULL;
+ }
+
+ if (linear_solver_options.preconditioner_type == CLUSTER_TRIDIAGONAL) {
+ *error = "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build "
+ "Ceres with SuiteSparse support";
+ return NULL;
+ }
+#endif
+
+ linear_solver_options.num_threads = options->num_linear_solver_threads;
+ linear_solver_options.num_eliminate_blocks =
+ options->num_eliminate_blocks;
+
+ if ((linear_solver_options.num_eliminate_blocks == 0) &&
+ IsSchurType(linear_solver_options.type)) {
+#ifndef CERES_NO_SUITESPARSE
+ LOG(INFO) << "No elimination block remaining "
+ << "switching to SPARSE_NORMAL_CHOLESKY.";
+ linear_solver_options.type = SPARSE_NORMAL_CHOLESKY;
+#else
+ LOG(INFO) << "No elimination block remaining switching to DENSE_QR.";
+ linear_solver_options.type = DENSE_QR;
+#endif // CERES_NO_SUITESPARSE
+ }
+
+#ifdef CERES_NO_SUITESPARSE
+ if (linear_solver_options.type == SPARSE_SCHUR) {
+ *error = "Can't use SPARSE_SCHUR because SuiteSparse was not "
+ "enabled when Ceres was built.";
+ return NULL;
+ }
+#endif // CERES_NO_SUITESPARSE
+
+ // The matrix used for storing the dense Schur complement has a
+ // single lock guarding the whole matrix. Running the
+ // SchurComplementSolver with multiple threads leads to maximum
+ // contention and slowdown. If the problem is large enough to
+ // benefit from a multithreaded schur eliminator, you should be
+ // using a SPARSE_SCHUR solver anyways.
+ if ((linear_solver_options.num_threads > 1) &&
+ (linear_solver_options.type == DENSE_SCHUR)) {
+ LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = "
+ << options->num_linear_solver_threads
+ << " with DENSE_SCHUR will result in poor performance; "
+ << "switching to single-threaded.";
+ linear_solver_options.num_threads = 1;
+ }
+
+ options->linear_solver_type = linear_solver_options.type;
+ options->num_linear_solver_threads = linear_solver_options.num_threads;
+
+ return LinearSolver::Create(linear_solver_options);
+}
+
+bool SolverImpl::ApplyUserOrdering(const ProblemImpl& problem_impl,
+ vector<double*>& ordering,
+ Program* program,
+ string* error) {
+ if (ordering.size() != program->NumParameterBlocks()) {
+ *error = StringPrintf("User specified ordering does not have the same "
+ "number of parameters as the problem. The problem"
+ "has %d blocks while the ordering has %ld blocks.",
+ program->NumParameterBlocks(),
+ ordering.size());
+ return false;
+ }
+
+ // Ensure that there are no duplicates in the user's ordering.
+ {
+ vector<double*> ordering_copy(ordering);
+ sort(ordering_copy.begin(), ordering_copy.end());
+ if (unique(ordering_copy.begin(), ordering_copy.end())
+ != ordering_copy.end()) {
+ *error = "User specified ordering contains duplicates.";
+ return false;
+ }
+ }
+
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+
+ fill(parameter_blocks->begin(),
+ parameter_blocks->end(),
+ static_cast<ParameterBlock*>(NULL));
+
+ const ProblemImpl::ParameterMap& parameter_map = problem_impl.parameter_map();
+ for (int i = 0; i < ordering.size(); ++i) {
+ ProblemImpl::ParameterMap::const_iterator it =
+ parameter_map.find(ordering[i]);
+ if (it == parameter_map.end()) {
+ *error = StringPrintf("User specified ordering contains a pointer "
+ "to a double that is not a parameter block in the "
+ "problem. The invalid double is at position %d "
+ " in options.ordering.", i);
+ return false;
+ }
+ (*parameter_blocks)[i] = it->second;
+ }
+ return true;
+}
+
+// Find the minimum index of any parameter block to the given residual.
+// Parameter blocks that have indices greater than num_eliminate_blocks are
+// considered to have an index equal to num_eliminate_blocks.
+int MinParameterBlock(const ResidualBlock* residual_block,
+ int num_eliminate_blocks) {
+ int min_parameter_block_position = num_eliminate_blocks;
+ for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
+ ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
+ DCHECK_NE(parameter_block->index(), -1)
+ << "Did you forget to call Program::SetParameterOffsetsAndIndex()?";
+ min_parameter_block_position = std::min(parameter_block->index(),
+ min_parameter_block_position);
+ }
+ return min_parameter_block_position;
+}
+
+// Reorder the residuals for program, if necessary, so that the residuals
+// involving each E block occur together. This is a necessary condition for the
+// Schur eliminator, which works on these "row blocks" in the jacobian.
+bool SolverImpl::MaybeReorderResidualBlocks(const Solver::Options& options,
+ Program* program,
+ string* error) {
+ // Only Schur types require the lexicographic reordering.
+ if (!IsSchurType(options.linear_solver_type)) {
+ return true;
+ }
+
+ CHECK_NE(0, options.num_eliminate_blocks)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Create a histogram of the number of residuals for each E block. There is an
+ // extra bucket at the end to catch all non-eliminated F blocks.
+ vector<int> residual_blocks_per_e_block(options.num_eliminate_blocks + 1);
+ vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
+ vector<int> min_position_per_residual(residual_blocks->size());
+ for (int i = 0; i < residual_blocks->size(); ++i) {
+ ResidualBlock* residual_block = (*residual_blocks)[i];
+ int position = MinParameterBlock(residual_block,
+ options.num_eliminate_blocks);
+ min_position_per_residual[i] = position;
+ DCHECK_LE(position, options.num_eliminate_blocks);
+ residual_blocks_per_e_block[position]++;
+ }
+
+ // Run a cumulative sum on the histogram, to obtain offsets to the start of
+ // each histogram bucket (where each bucket is for the residuals for that
+ // E-block).
+ vector<int> offsets(options.num_eliminate_blocks + 1);
+ std::partial_sum(residual_blocks_per_e_block.begin(),
+ residual_blocks_per_e_block.end(),
+ offsets.begin());
+ CHECK_EQ(offsets.back(), residual_blocks->size())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ CHECK(find(residual_blocks_per_e_block.begin(),
+ residual_blocks_per_e_block.end() - 1, 0) !=
+ residual_blocks_per_e_block.end())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ // Fill in each bucket with the residual blocks for its corresponding E block.
+ // Each bucket is individually filled from the back of the bucket to the front
+ // of the bucket. The filling order among the buckets is dictated by the
+ // residual blocks. This loop uses the offsets as counters; subtracting one
+ // from each offset as a residual block is placed in the bucket. When the
+ // filling is finished, the offset pointerts should have shifted down one
+ // entry (this is verified below).
+ vector<ResidualBlock*> reordered_residual_blocks(
+ (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
+ for (int i = 0; i < residual_blocks->size(); ++i) {
+ int bucket = min_position_per_residual[i];
+
+ // Decrement the cursor, which should now point at the next empty position.
+ offsets[bucket]--;
+
+ // Sanity.
+ CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+
+ reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
+ }
+
+ // Sanity check #1: The difference in bucket offsets should match the
+ // histogram sizes.
+ for (int i = 0; i < options.num_eliminate_blocks; ++i) {
+ CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+ }
+ // Sanity check #2: No NULL's left behind.
+ for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
+ CHECK(reordered_residual_blocks[i] != NULL)
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
+ }
+
+ // Now that the residuals are collected by E block, swap them in place.
+ swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
+ return true;
+}
+
+Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options,
+ Program* program,
+ string* error) {
+ Evaluator::Options evaluator_options;
+ evaluator_options.linear_solver_type = options.linear_solver_type;
+ evaluator_options.num_eliminate_blocks = options.num_eliminate_blocks;
+ evaluator_options.num_threads = options.num_threads;
+ return Evaluator::Create(evaluator_options, program, error);
+}
+
+} // namespace internal
+} // namespace ceres