Initial commit of Ceres Solver.
diff --git a/internal/ceres/solver_impl.cc b/internal/ceres/solver_impl.cc
new file mode 100644
index 0000000..ff2f5ea
--- /dev/null
+++ b/internal/ceres/solver_impl.cc
@@ -0,0 +1,699 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+
+#include "ceres/solver_impl.h"
+
+#include <iostream>  // NOLINT
+#include <numeric>
+#include "ceres/evaluator.h"
+#include "ceres/gradient_checking_cost_function.h"
+#include "ceres/levenberg_marquardt.h"
+#include "ceres/linear_solver.h"
+#include "ceres/map_util.h"
+#include "ceres/minimizer.h"
+#include "ceres/parameter_block.h"
+#include "ceres/problem_impl.h"
+#include "ceres/program.h"
+#include "ceres/residual_block.h"
+#include "ceres/schur_ordering.h"
+#include "ceres/stringprintf.h"
+#include "ceres/iteration_callback.h"
+#include "ceres/problem.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+void EvaluateCostAndResiduals(ProblemImpl* problem_impl,
+                              double* cost,
+                              vector<double>* residuals) {
+  CHECK_NOTNULL(cost);
+  Program* program = CHECK_NOTNULL(problem_impl)->mutable_program();
+  if (residuals != NULL) {
+    residuals->resize(program->NumResiduals());
+    program->Evaluate(cost, &(*residuals)[0]);
+  } else {
+    program->Evaluate(cost, NULL);
+  }
+}
+
+// Callback for updating the user's parameter blocks. Updates are only
+// done if the step is successful.
+class StateUpdatingCallback : public IterationCallback {
+ public:
+  StateUpdatingCallback(Program* program, double* parameters)
+      : program_(program), parameters_(parameters) {}
+
+  CallbackReturnType operator()(const IterationSummary& summary) {
+    if (summary.step_is_successful) {
+      program_->StateVectorToParameterBlocks(parameters_);
+      program_->CopyParameterBlockStateToUserState();
+    }
+    return SOLVER_CONTINUE;
+  }
+
+ private:
+  Program* program_;
+  double* parameters_;
+};
+
+// Callback for logging the state of the minimizer to STDERR or STDOUT
+// depending on the user's preferences and logging level.
+class LoggingCallback : public IterationCallback {
+ public:
+  explicit LoggingCallback(bool log_to_stdout)
+      : log_to_stdout_(log_to_stdout) {}
+
+  ~LoggingCallback() {}
+
+  CallbackReturnType operator()(const IterationSummary& summary) {
+    const char* kReportRowFormat =
+        "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
+        "rho:% 3.2e mu:% 3.2e li:% 3d";
+    string output = StringPrintf(kReportRowFormat,
+                                 summary.iteration,
+                                 summary.cost,
+                                 summary.cost_change,
+                                 summary.gradient_max_norm,
+                                 summary.step_norm,
+                                 summary.relative_decrease,
+                                 summary.mu,
+                                 summary.linear_solver_iterations);
+    if (log_to_stdout_) {
+      cout << output << endl;
+    } else {
+      VLOG(1) << output;
+    }
+    return SOLVER_CONTINUE;
+  }
+
+ private:
+  const bool log_to_stdout_;
+};
+
+}  // namespace
+
+void SolverImpl::Minimize(const Solver::Options& options,
+                          Program* program,
+                          Evaluator* evaluator,
+                          LinearSolver* linear_solver,
+                          double* initial_parameters,
+                          double* final_parameters,
+                          Solver::Summary* summary) {
+  Minimizer::Options minimizer_options(options);
+
+  LoggingCallback logging_callback(options.minimizer_progress_to_stdout);
+  if (options.logging_type != SILENT) {
+    minimizer_options.callbacks.push_back(&logging_callback);
+  }
+
+  StateUpdatingCallback updating_callback(program, initial_parameters);
+  if (options.update_state_every_iteration) {
+    minimizer_options.callbacks.push_back(&updating_callback);
+  }
+
+  LevenbergMarquardt levenberg_marquardt;
+
+  time_t start_minimizer_time_seconds = time(NULL);
+  levenberg_marquardt.Minimize(minimizer_options,
+                               evaluator,
+                               linear_solver,
+                               initial_parameters,
+                               final_parameters,
+                               summary);
+  summary->minimizer_time_in_seconds =
+      time(NULL) - start_minimizer_time_seconds;
+}
+
+void SolverImpl::Solve(const Solver::Options& original_options,
+                       Problem* problem,
+                       Solver::Summary* summary) {
+  Solver::Options options(original_options);
+
+#ifndef CERES_USE_OPENMP
+  if (options.num_threads > 1) {
+    LOG(WARNING)
+        << "OpenMP support is not compiled into this binary; "
+        << "only options.num_threads=1 is supported. Switching"
+        << "to single threaded mode.";
+    options.num_threads = 1;
+  }
+  if (options.num_linear_solver_threads > 1) {
+    LOG(WARNING)
+        << "OpenMP support is not compiled into this binary; "
+        << "only options.num_linear_solver_threads=1 is supported. Switching"
+        << "to single threaded mode.";
+    options.num_linear_solver_threads = 1;
+  }
+#endif
+
+  // Reset the summary object to its default values;
+  *CHECK_NOTNULL(summary) = Solver::Summary();
+  summary->linear_solver_type_given = options.linear_solver_type;
+  summary->num_eliminate_blocks_given = original_options.num_eliminate_blocks;
+  summary->num_threads_given = original_options.num_threads;
+  summary->num_linear_solver_threads_given =
+      original_options.num_linear_solver_threads;
+  summary->ordering_type = original_options.ordering_type;
+
+  ProblemImpl* problem_impl = CHECK_NOTNULL(problem)->problem_impl_.get();
+
+  summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
+  summary->num_parameters = problem_impl->NumParameters();
+  summary->num_residual_blocks = problem_impl->NumResidualBlocks();
+  summary->num_residuals = problem_impl->NumResiduals();
+
+  summary->num_threads_used = options.num_threads;
+
+  // Evaluate the initial cost and residual vector (if needed). The
+  // initial cost needs to be computed on the original unpreprocessed
+  // problem, as it is used to determine the value of the "fixed" part
+  // of the objective function after the problem has undergone
+  // reduction. Also the initial residuals are in the order in which
+  // the user added the ResidualBlocks to the optimization problem.
+  EvaluateCostAndResiduals(problem_impl,
+                           &summary->initial_cost,
+                           options.return_initial_residuals
+                           ? &summary->initial_residuals
+                           : NULL);
+
+  // If the user requests gradient checking, construct a new
+  // ProblemImpl by wrapping the CostFunctions of problem_impl inside
+  // GradientCheckingCostFunction and replacing problem_impl with
+  // gradient_checking_problem_impl.
+  scoped_ptr<ProblemImpl> gradient_checking_problem_impl;
+  if (options.check_gradients) {
+    VLOG(1) << "Checking Gradients";
+    gradient_checking_problem_impl.reset(
+        CreateGradientCheckingProblemImpl(
+            problem_impl,
+            options.numeric_derivative_relative_step_size,
+            options.gradient_check_relative_precision));
+
+    // From here on, problem_impl will point to the GradientChecking version.
+    problem_impl = gradient_checking_problem_impl.get();
+  }
+
+  // Create the three objects needed to minimize: the transformed program, the
+  // evaluator, and the linear solver.
+
+  scoped_ptr<Program> reduced_program(
+      CreateReducedProgram(&options, problem_impl, &summary->error));
+  if (reduced_program == NULL) {
+    return;
+  }
+
+  summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
+  summary->num_parameters_reduced = reduced_program->NumParameters();
+  summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
+  summary->num_residuals_reduced = reduced_program->NumResiduals();
+
+  scoped_ptr<LinearSolver>
+      linear_solver(CreateLinearSolver(&options, &summary->error));
+  summary->linear_solver_type_used = options.linear_solver_type;
+  summary->preconditioner_type = options.preconditioner_type;
+  summary->num_eliminate_blocks_used = options.num_eliminate_blocks;
+  summary->num_linear_solver_threads_used = options.num_linear_solver_threads;
+
+  if (linear_solver == NULL) {
+    return;
+  }
+
+  if (!MaybeReorderResidualBlocks(options,
+                                  reduced_program.get(),
+                                  &summary->error)) {
+    return;
+  }
+
+  scoped_ptr<Evaluator> evaluator(
+      CreateEvaluator(options, reduced_program.get(), &summary->error));
+  if (evaluator == NULL) {
+    return;
+  }
+
+  // The optimizer works on contiguous parameter vectors; allocate some.
+  Vector initial_parameters(reduced_program->NumParameters());
+  Vector optimized_parameters(reduced_program->NumParameters());
+
+  // Collect the discontiguous parameters into a contiguous state vector.
+  reduced_program->ParameterBlocksToStateVector(&initial_parameters[0]);
+
+  // Run the optimization.
+  Minimize(options,
+           reduced_program.get(),
+           evaluator.get(),
+           linear_solver.get(),
+           initial_parameters.data(),
+           optimized_parameters.data(),
+           summary);
+
+  // If the user aborted mid-optimization or the optimization
+  // terminated because of a numerical failure, then return without
+  // updating user state.
+  if (summary->termination_type == USER_ABORT ||
+      summary->termination_type == NUMERICAL_FAILURE) {
+    return;
+  }
+
+  // Push the contiguous optimized parameters back to the user's parameters.
+  reduced_program->StateVectorToParameterBlocks(&optimized_parameters[0]);
+  reduced_program->CopyParameterBlockStateToUserState();
+
+  // Return the final cost and residuals for the original problem.
+  EvaluateCostAndResiduals(problem->problem_impl_.get(),
+                           &summary->final_cost,
+                           options.return_final_residuals
+                           ? &summary->final_residuals
+                           : NULL);
+
+  // Stick a fork in it, we're done.
+  return;
+}
+
+// Strips varying parameters and residuals, maintaining order, and updating
+// num_eliminate_blocks.
+bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
+                                              int* num_eliminate_blocks,
+                                              string* error) {
+  int original_num_eliminate_blocks = *num_eliminate_blocks;
+  vector<ParameterBlock*>* parameter_blocks =
+      program->mutable_parameter_blocks();
+
+  // Mark all the parameters as unused. Abuse the index member of the parameter
+  // blocks for the marking.
+  for (int i = 0; i < parameter_blocks->size(); ++i) {
+    (*parameter_blocks)[i]->set_index(-1);
+  }
+
+  // Filter out residual that have all-constant parameters, and mark all the
+  // parameter blocks that appear in residuals.
+  {
+    vector<ResidualBlock*>* residual_blocks =
+        program->mutable_residual_blocks();
+    int j = 0;
+    for (int i = 0; i < residual_blocks->size(); ++i) {
+      ResidualBlock* residual_block = (*residual_blocks)[i];
+      int num_parameter_blocks = residual_block->NumParameterBlocks();
+
+      // Determine if the residual block is fixed, and also mark varying
+      // parameters that appear in the residual block.
+      bool all_constant = true;
+      for (int k = 0; k < num_parameter_blocks; k++) {
+        ParameterBlock* parameter_block = residual_block->parameter_blocks()[k];
+        if (!parameter_block->IsConstant()) {
+          all_constant = false;
+          parameter_block->set_index(1);
+        }
+      }
+
+      if (!all_constant) {
+        (*residual_blocks)[j++] = (*residual_blocks)[i];
+      }
+    }
+    residual_blocks->resize(j);
+  }
+
+  // Filter out unused or fixed parameter blocks, and update
+  // num_eliminate_blocks as necessary.
+  {
+    vector<ParameterBlock*>* parameter_blocks =
+        program->mutable_parameter_blocks();
+    int j = 0;
+    for (int i = 0; i < parameter_blocks->size(); ++i) {
+      ParameterBlock* parameter_block = (*parameter_blocks)[i];
+      if (parameter_block->index() == 1) {
+        (*parameter_blocks)[j++] = parameter_block;
+      } else if (i < original_num_eliminate_blocks) {
+        (*num_eliminate_blocks)--;
+      }
+    }
+    parameter_blocks->resize(j);
+  }
+
+  CHECK(((program->NumResidualBlocks() == 0) &&
+         (program->NumParameterBlocks() == 0)) ||
+        ((program->NumResidualBlocks() != 0) &&
+         (program->NumParameterBlocks() != 0)))
+      << "Congratulations, you found a bug in Ceres. Please report it.";
+  return true;
+}
+
+Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
+                                          ProblemImpl* problem_impl,
+                                          string* error) {
+  Program* original_program = problem_impl->mutable_program();
+  scoped_ptr<Program> transformed_program(new Program(*original_program));
+
+  if (options->ordering_type == USER &&
+      !ApplyUserOrdering(*problem_impl,
+                         options->ordering,
+                         transformed_program.get(),
+                         error)) {
+    return NULL;
+  }
+
+  if (options->ordering_type == SCHUR && options->num_eliminate_blocks != 0) {
+    *error = "Can't specify SCHUR ordering and num_eliminate_blocks "
+        "at the same time; SCHUR ordering determines "
+        "num_eliminate_blocks automatically.";
+    return NULL;
+  }
+
+  if (options->ordering_type == SCHUR && options->ordering.size() != 0) {
+    *error = "Can't specify SCHUR ordering type and the ordering "
+        "vector at the same time; SCHUR ordering determines "
+        "a suitable parameter ordering automatically.";
+    return NULL;
+  }
+
+  int num_eliminate_blocks = options->num_eliminate_blocks;
+
+  if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
+                                    &num_eliminate_blocks,
+                                    error)) {
+    return NULL;
+  }
+
+  if (transformed_program->NumParameterBlocks() == 0) {
+    LOG(WARNING) << "No varying parameter blocks to optimize; "
+                 << "bailing early.";
+    return transformed_program.release();
+  }
+
+  if (options->ordering_type == SCHUR) {
+    vector<ParameterBlock*> schur_ordering;
+    num_eliminate_blocks = ComputeSchurOrdering(*transformed_program,
+                                                &schur_ordering);
+    CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks())
+        << "Congratulations, you found a Ceres bug! Please report this error "
+        << "to the developers.";
+
+    // Replace the transformed program's ordering with the schur ordering.
+    swap(*transformed_program->mutable_parameter_blocks(), schur_ordering);
+  }
+  options->num_eliminate_blocks = num_eliminate_blocks;
+  CHECK_GE(options->num_eliminate_blocks, 0)
+      << "Congratulations, you found a Ceres bug! Please report this error "
+      << "to the developers.";
+
+  // Since the transformed program is the "active" program, and it is mutated,
+  // update the parameter offsets and indices.
+  transformed_program->SetParameterOffsetsAndIndex();
+  return transformed_program.release();
+}
+
+LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
+                                             string* error) {
+  if (options->linear_solver_type ==  CONJUGATE_GRADIENTS) {
+    *error = "CONJUGATE_GRADIENTS is not a valid solver for "
+        "linear least squares problems.";
+    return NULL;
+  }
+
+#ifdef CERES_NO_SUITESPARSE
+  if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
+    *error = "Can't use SPARSE_NORMAL_CHOLESKY because SuiteSparse was not "
+        "enabled when Ceres was built.";
+    return NULL;
+  }
+#endif  // CERES_NO_SUITESPARSE
+
+  if (options->linear_solver_max_num_iterations <= 0) {
+    *error = "Solver::Options::linear_solver_max_num_iterations is 0.";
+    return NULL;
+  }
+  if (options->linear_solver_min_num_iterations <= 0) {
+    *error = "Solver::Options::linear_solver_min_num_iterations is 0.";
+    return NULL;
+  }
+  if (options->linear_solver_min_num_iterations >
+      options->linear_solver_max_num_iterations) {
+    *error = "Solver::Options::linear_solver_min_num_iterations > "
+        "Solver::Options::linear_solver_max_num_iterations.";
+    return NULL;
+  }
+
+  LinearSolver::Options linear_solver_options;
+  linear_solver_options.constant_sparsity = true;
+  linear_solver_options.min_num_iterations =
+        options->linear_solver_min_num_iterations;
+  linear_solver_options.max_num_iterations =
+      options->linear_solver_max_num_iterations;
+  linear_solver_options.type = options->linear_solver_type;
+  linear_solver_options.preconditioner_type = options->preconditioner_type;
+
+#ifdef CERES_NO_SUITESPARSE
+  if (linear_solver_options.preconditioner_type == SCHUR_JACOBI) {
+    *error =  "SCHUR_JACOBI preconditioner not suppored. Please build Ceres "
+        "with SuiteSparse support";
+    return NULL;
+  }
+
+  if (linear_solver_options.preconditioner_type == CLUSTER_JACOBI) {
+    *error =  "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres "
+        "with SuiteSparse support";
+    return NULL;
+  }
+
+  if (linear_solver_options.preconditioner_type == CLUSTER_TRIDIAGONAL) {
+    *error =  "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build "
+        "Ceres with SuiteSparse support";
+    return NULL;
+  }
+#endif
+
+  linear_solver_options.num_threads = options->num_linear_solver_threads;
+  linear_solver_options.num_eliminate_blocks =
+      options->num_eliminate_blocks;
+
+  if ((linear_solver_options.num_eliminate_blocks == 0) &&
+      IsSchurType(linear_solver_options.type)) {
+#ifndef CERES_NO_SUITESPARSE
+    LOG(INFO) << "No elimination block remaining "
+              << "switching to SPARSE_NORMAL_CHOLESKY.";
+    linear_solver_options.type = SPARSE_NORMAL_CHOLESKY;
+#else
+    LOG(INFO) << "No elimination block remaining switching to DENSE_QR.";
+    linear_solver_options.type = DENSE_QR;
+#endif  // CERES_NO_SUITESPARSE
+  }
+
+#ifdef CERES_NO_SUITESPARSE
+  if (linear_solver_options.type == SPARSE_SCHUR) {
+    *error = "Can't use SPARSE_SCHUR because SuiteSparse was not "
+        "enabled when Ceres was built.";
+    return NULL;
+  }
+#endif  // CERES_NO_SUITESPARSE
+
+  // The matrix used for storing the dense Schur complement has a
+  // single lock guarding the whole matrix. Running the
+  // SchurComplementSolver with multiple threads leads to maximum
+  // contention and slowdown. If the problem is large enough to
+  // benefit from a multithreaded schur eliminator, you should be
+  // using a SPARSE_SCHUR solver anyways.
+  if ((linear_solver_options.num_threads > 1) &&
+      (linear_solver_options.type == DENSE_SCHUR)) {
+    LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = "
+                 << options->num_linear_solver_threads
+                 << " with DENSE_SCHUR will result in poor performance; "
+                 << "switching to single-threaded.";
+    linear_solver_options.num_threads = 1;
+  }
+
+  options->linear_solver_type = linear_solver_options.type;
+  options->num_linear_solver_threads = linear_solver_options.num_threads;
+
+  return LinearSolver::Create(linear_solver_options);
+}
+
+bool SolverImpl::ApplyUserOrdering(const ProblemImpl& problem_impl,
+                                   vector<double*>& ordering,
+                                   Program* program,
+                                   string* error) {
+  if (ordering.size() != program->NumParameterBlocks()) {
+    *error = StringPrintf("User specified ordering does not have the same "
+                          "number of parameters as the problem. The problem"
+                          "has %d blocks while the ordering has %ld blocks.",
+                          program->NumParameterBlocks(),
+                          ordering.size());
+    return false;
+  }
+
+  // Ensure that there are no duplicates in the user's ordering.
+  {
+    vector<double*> ordering_copy(ordering);
+    sort(ordering_copy.begin(), ordering_copy.end());
+    if (unique(ordering_copy.begin(), ordering_copy.end())
+        != ordering_copy.end()) {
+      *error = "User specified ordering contains duplicates.";
+      return false;
+    }
+  }
+
+  vector<ParameterBlock*>* parameter_blocks =
+      program->mutable_parameter_blocks();
+
+  fill(parameter_blocks->begin(),
+       parameter_blocks->end(),
+       static_cast<ParameterBlock*>(NULL));
+
+  const ProblemImpl::ParameterMap& parameter_map = problem_impl.parameter_map();
+  for (int i = 0; i < ordering.size(); ++i) {
+    ProblemImpl::ParameterMap::const_iterator it =
+        parameter_map.find(ordering[i]);
+    if (it == parameter_map.end()) {
+      *error = StringPrintf("User specified ordering contains a pointer "
+                            "to a double that is not a parameter block in the "
+                            "problem. The invalid double is at position %d "
+                            " in options.ordering.", i);
+      return false;
+    }
+    (*parameter_blocks)[i] = it->second;
+  }
+  return true;
+}
+
+// Find the minimum index of any parameter block to the given residual.
+// Parameter blocks that have indices greater than num_eliminate_blocks are
+// considered to have an index equal to num_eliminate_blocks.
+int MinParameterBlock(const ResidualBlock* residual_block,
+                      int num_eliminate_blocks) {
+  int min_parameter_block_position = num_eliminate_blocks;
+  for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
+    ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
+    DCHECK_NE(parameter_block->index(), -1)
+        << "Did you forget to call Program::SetParameterOffsetsAndIndex()?";
+    min_parameter_block_position = std::min(parameter_block->index(),
+                                            min_parameter_block_position);
+  }
+  return min_parameter_block_position;
+}
+
+// Reorder the residuals for program, if necessary, so that the residuals
+// involving each E block occur together. This is a necessary condition for the
+// Schur eliminator, which works on these "row blocks" in the jacobian.
+bool SolverImpl::MaybeReorderResidualBlocks(const Solver::Options& options,
+                                            Program* program,
+                                            string* error) {
+  // Only Schur types require the lexicographic reordering.
+  if (!IsSchurType(options.linear_solver_type)) {
+    return true;
+  }
+
+  CHECK_NE(0, options.num_eliminate_blocks)
+        << "Congratulations, you found a Ceres bug! Please report this error "
+        << "to the developers.";
+
+  // Create a histogram of the number of residuals for each E block. There is an
+  // extra bucket at the end to catch all non-eliminated F blocks.
+  vector<int> residual_blocks_per_e_block(options.num_eliminate_blocks + 1);
+  vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
+  vector<int> min_position_per_residual(residual_blocks->size());
+  for (int i = 0; i < residual_blocks->size(); ++i) {
+    ResidualBlock* residual_block = (*residual_blocks)[i];
+    int position = MinParameterBlock(residual_block,
+                                     options.num_eliminate_blocks);
+    min_position_per_residual[i] = position;
+    DCHECK_LE(position, options.num_eliminate_blocks);
+    residual_blocks_per_e_block[position]++;
+  }
+
+  // Run a cumulative sum on the histogram, to obtain offsets to the start of
+  // each histogram bucket (where each bucket is for the residuals for that
+  // E-block).
+  vector<int> offsets(options.num_eliminate_blocks + 1);
+  std::partial_sum(residual_blocks_per_e_block.begin(),
+                   residual_blocks_per_e_block.end(),
+                   offsets.begin());
+  CHECK_EQ(offsets.back(), residual_blocks->size())
+      << "Congratulations, you found a Ceres bug! Please report this error "
+      << "to the developers.";
+
+  CHECK(find(residual_blocks_per_e_block.begin(),
+             residual_blocks_per_e_block.end() - 1, 0) !=
+        residual_blocks_per_e_block.end())
+      << "Congratulations, you found a Ceres bug! Please report this error "
+      << "to the developers.";
+
+  // Fill in each bucket with the residual blocks for its corresponding E block.
+  // Each bucket is individually filled from the back of the bucket to the front
+  // of the bucket. The filling order among the buckets is dictated by the
+  // residual blocks. This loop uses the offsets as counters; subtracting one
+  // from each offset as a residual block is placed in the bucket. When the
+  // filling is finished, the offset pointerts should have shifted down one
+  // entry (this is verified below).
+  vector<ResidualBlock*> reordered_residual_blocks(
+      (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
+  for (int i = 0; i < residual_blocks->size(); ++i) {
+    int bucket = min_position_per_residual[i];
+
+    // Decrement the cursor, which should now point at the next empty position.
+    offsets[bucket]--;
+
+    // Sanity.
+    CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
+        << "Congratulations, you found a Ceres bug! Please report this error "
+        << "to the developers.";
+
+    reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
+  }
+
+  // Sanity check #1: The difference in bucket offsets should match the
+  // histogram sizes.
+  for (int i = 0; i < options.num_eliminate_blocks; ++i) {
+    CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
+        << "Congratulations, you found a Ceres bug! Please report this error "
+        << "to the developers.";
+  }
+  // Sanity check #2: No NULL's left behind.
+  for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
+    CHECK(reordered_residual_blocks[i] != NULL)
+        << "Congratulations, you found a Ceres bug! Please report this error "
+        << "to the developers.";
+  }
+
+  // Now that the residuals are collected by E block, swap them in place.
+  swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
+  return true;
+}
+
+Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options,
+                                       Program* program,
+                                       string* error) {
+  Evaluator::Options evaluator_options;
+  evaluator_options.linear_solver_type = options.linear_solver_type;
+  evaluator_options.num_eliminate_blocks = options.num_eliminate_blocks;
+  evaluator_options.num_threads = options.num_threads;
+  return Evaluator::Create(evaluator_options, program, error);
+}
+
+}  // namespace internal
+}  // namespace ceres