Initial commit of Ceres Solver.
diff --git a/internal/ceres/visibility_based_preconditioner.cc b/internal/ceres/visibility_based_preconditioner.cc
new file mode 100644
index 0000000..aca7752
--- /dev/null
+++ b/internal/ceres/visibility_based_preconditioner.cc
@@ -0,0 +1,611 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/visibility_based_preconditioner.h"
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <numeric>
+#include <set>
+#include <utility>
+#include <vector>
+#include <glog/logging.h>
+#include "Eigen/Dense"
+#include "ceres/block_random_access_sparse_matrix.h"
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/canonical_views_clustering.h"
+#include "ceres/collections_port.h"
+#include "ceres/detect_structure.h"
+#include "ceres/graph.h"
+#include "ceres/graph_algorithms.h"
+#include "ceres/linear_solver.h"
+#include "ceres/schur_eliminator.h"
+#include "ceres/visibility.h"
+#include "ceres/internal/scoped_ptr.h"
+
+namespace ceres {
+namespace internal {
+
+// TODO(sameeragarwal): Currently these are magic weights for the
+// preconditioner construction. Move these higher up into the Options
+// struct and provide some guidelines for choosing them.
+//
+// This will require some more work on the clustering algorithm and
+// possibly some more refactoring of the code.
+static const double kSizePenaltyWeight = 3.0;
+static const double kSimilarityPenaltyWeight = 0.0;
+
+#ifndef CERES_NO_SUITESPARSE
+VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
+    const CompressedRowBlockStructure& bs,
+    const LinearSolver::Options& options)
+    : options_(options),
+      num_blocks_(0),
+      num_clusters_(0),
+      factor_(NULL) {
+  CHECK_GT(options_.num_eliminate_blocks, 0);
+  CHECK(options_.preconditioner_type == SCHUR_JACOBI ||
+        options_.preconditioner_type == CLUSTER_JACOBI ||
+        options_.preconditioner_type == CLUSTER_TRIDIAGONAL)
+      << "Unknown preconditioner type: " << options_.preconditioner_type;
+  num_blocks_ = bs.cols.size() - options_.num_eliminate_blocks;
+  CHECK_GT(num_blocks_, 0)
+      << "Jacobian should have atleast 1 f_block for "
+      << "visibility based preconditioning.";
+
+  // Vector of camera block sizes
+  block_size_.resize(num_blocks_);
+  for (int i = 0; i < num_blocks_; ++i) {
+    block_size_[i] = bs.cols[i + options_.num_eliminate_blocks].size;
+  }
+
+  const time_t start_time = time(NULL);
+  switch (options_.preconditioner_type) {
+    case SCHUR_JACOBI:
+      ComputeSchurJacobiSparsity(bs);
+      break;
+    case CLUSTER_JACOBI:
+      ComputeClusterJacobiSparsity(bs);
+      break;
+    case CLUSTER_TRIDIAGONAL:
+      ComputeClusterTridiagonalSparsity(bs);
+      break;
+    default:
+      LOG(FATAL) << "Unknown preconditioner type";
+  }
+  const time_t structure_time = time(NULL);
+  InitStorage(bs);
+  const time_t storage_time = time(NULL);
+  InitEliminator(bs);
+  const time_t eliminator_time = time(NULL);
+
+  // Allocate temporary storage for a vector used during
+  // RightMultiply.
+  tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL,
+                                                 m_->num_rows(),
+                                                 m_->num_rows()));
+  const time_t init_time = time(NULL);
+  VLOG(2) << "init time: "
+          << init_time - start_time
+          << " structure time: " << structure_time - start_time
+          << " storage time:" << storage_time - structure_time
+          << " eliminator time: " << eliminator_time - storage_time;
+}
+
+VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {
+  if (factor_ != NULL) {
+    ss_.Free(factor_);
+    factor_ = NULL;
+  }
+  if (tmp_rhs_ != NULL) {
+    ss_.Free(tmp_rhs_);
+    tmp_rhs_ = NULL;
+  }
+}
+
+// Determine the sparsity structure of the SCHUR_JACOBI
+// preconditioner. SCHUR_JACOBI is an extreme case of a visibility
+// based preconditioner where each camera block corresponds to a
+// cluster and there is no interaction between clusters.
+void VisibilityBasedPreconditioner::ComputeSchurJacobiSparsity(
+    const CompressedRowBlockStructure& bs) {
+  num_clusters_ = num_blocks_;
+  cluster_membership_.resize(num_blocks_);
+  cluster_pairs_.clear();
+
+  // Each camea block is a member of its own cluster and the only
+  // cluster pairs are the self edges (i,i).
+  for (int i = 0; i < num_clusters_; ++i) {
+    cluster_membership_[i] = i;
+    cluster_pairs_.insert(make_pair(i, i));
+  }
+}
+
+// Determine the sparsity structure of the CLUSTER_JACOBI
+// preconditioner. It clusters cameras using their scene
+// visibility. The clusters form the diagonal blocks of the
+// preconditioner matrix.
+void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
+    const CompressedRowBlockStructure& bs) {
+  vector<set<int> > visibility;
+  ComputeVisibility(bs, options_.num_eliminate_blocks, &visibility);
+  CHECK_EQ(num_blocks_, visibility.size());
+  ClusterCameras(visibility);
+  cluster_pairs_.clear();
+  for (int i = 0; i < num_clusters_; ++i) {
+    cluster_pairs_.insert(make_pair(i, i));
+  }
+}
+
+// Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
+// preconditioner. It clusters cameras using using the scene
+// visibility and then finds the strongly interacting pairs of
+// clusters by constructing another graph with the clusters as
+// vertices and approximating it with a degree-2 maximum spanning
+// forest. The set of edges in this forest are the cluster pairs.
+void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
+    const CompressedRowBlockStructure& bs) {
+  vector<set<int> > visibility;
+  ComputeVisibility(bs, options_.num_eliminate_blocks, &visibility);
+  CHECK_EQ(num_blocks_, visibility.size());
+  ClusterCameras(visibility);
+
+  // Construct a weighted graph on the set of clusters, where the
+  // edges are the number of 3D points/e_blocks visible in both the
+  // clusters at the ends of the edge. Return an approximate degree-2
+  // maximum spanning forest of this graph.
+  vector<set<int> > cluster_visibility;
+  ComputeClusterVisibility(visibility, &cluster_visibility);
+  scoped_ptr<Graph<int> > cluster_graph(
+      CHECK_NOTNULL(CreateClusterGraph(cluster_visibility)));
+  scoped_ptr<Graph<int> > forest(
+      CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph)));
+  ForestToClusterPairs(*forest, &cluster_pairs_);
+}
+
+// Allocate storage for the preconditioner matrix.
+void VisibilityBasedPreconditioner::InitStorage(
+    const CompressedRowBlockStructure& bs) {
+  ComputeBlockPairsInPreconditioner(bs);
+  m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
+}
+
+// Call the canonical views algorithm and cluster the cameras based on
+// their visibility sets. The visibility set of a camera is the set of
+// e_blocks/3D points in the scene that are seen by it.
+//
+// The cluster_membership_ vector is updated to indicate cluster
+// memberships for each camera block.
+void VisibilityBasedPreconditioner::ClusterCameras(
+    const vector<set<int> >& visibility) {
+  scoped_ptr<Graph<int> > schur_complement_graph(
+      CHECK_NOTNULL(CreateSchurComplementGraph(visibility)));
+
+  CanonicalViewsClusteringOptions options;
+  options.size_penalty_weight = kSizePenaltyWeight;
+  options.similarity_penalty_weight = kSimilarityPenaltyWeight;
+
+  vector<int> centers;
+  HashMap<int, int> membership;
+  ComputeCanonicalViewsClustering(*schur_complement_graph,
+                                  options,
+                                  &centers,
+                                  &membership);
+  num_clusters_ = centers.size();
+  CHECK_GT(num_clusters_, 0);
+  VLOG(2) << "num_clusters: " << num_clusters_;
+  FlattenMembershipMap(membership, &cluster_membership_);
+}
+
+// Compute the block sparsity structure of the Schur complement
+// matrix. For each pair of cameras contributing a non-zero cell to
+// the schur complement, determine if that cell is present in the
+// preconditioner or not.
+//
+// A pair of cameras contribute a cell to the preconditioner if they
+// are part of the same cluster or if the the two clusters that they
+// belong have an edge connecting them in the degree-2 maximum
+// spanning forest.
+//
+// For example, a camera pair (i,j) where i belonges to cluster1 and
+// j belongs to cluster2 (assume that cluster1 < cluster2).
+//
+// The cell corresponding to (i,j) is present in the preconditioner
+// if cluster1 == cluster2 or the pair (cluster1, cluster2) were
+// connected by an edge in the degree-2 maximum spanning forest.
+//
+// Since we have already expanded the forest into a set of camera
+// pairs/edges, including self edges, the check can be reduced to
+// checking membership of (cluster1, cluster2) in cluster_pairs_.
+void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
+    const CompressedRowBlockStructure& bs) {
+  block_pairs_.clear();
+  for (int i = 0; i < num_blocks_; ++i) {
+    block_pairs_.insert(make_pair(i, i));
+  }
+
+  int r = 0;
+  set<pair<int, int> > skipped_pairs;
+  const int num_row_blocks = bs.rows.size();
+  const int num_eliminate_blocks = options_.num_eliminate_blocks;
+
+  // Iterate over each row of the matrix. The block structure of the
+  // matrix is assumed to be sorted in order of the e_blocks/point
+  // blocks. Thus all row blocks containing an e_block/point occur
+  // contiguously. Further, if present, an e_block is always the first
+  // parameter block in each row block.  These structural assumptions
+  // are common to all Schur complement based solvers in Ceres.
+  //
+  // For each e_block/point block we identify the set of cameras
+  // seeing it. The cross product of this set with itself is the set
+  // of non-zero cells contibuted by this e_block.
+  //
+  // The time complexity of this is O(nm^2) where, n is the number of
+  // 3d points and m is the maximum number of cameras seeing any
+  // point, which for most scenes is a fairly small number.
+  while (r < num_row_blocks) {
+    int e_block_id = bs.rows[r].cells.front().block_id;
+    if (e_block_id >= num_eliminate_blocks) {
+      // Skip the rows whose first block is an f_block.
+      break;
+    }
+
+    set<int> f_blocks;
+    for (; r < num_row_blocks; ++r) {
+      const CompressedRow& row = bs.rows[r];
+      if (row.cells.front().block_id != e_block_id) {
+        break;
+      }
+
+      // Iterate over the blocks in the row, ignoring the first block
+      // since it is the one to be eliminated and adding the rest to
+      // the list of f_blocks associated with this e_block.
+      for (int c = 1; c < row.cells.size(); ++c) {
+        const Cell& cell = row.cells[c];
+        const int f_block_id = cell.block_id - num_eliminate_blocks;
+        CHECK_GE(f_block_id, 0);
+        f_blocks.insert(f_block_id);
+      }
+    }
+
+    for (set<int>::const_iterator block1 = f_blocks.begin();
+         block1 != f_blocks.end();
+         ++block1) {
+      set<int>::const_iterator block2 = block1;
+      ++block2;
+      for (; block2 != f_blocks.end(); ++block2) {
+        if (IsBlockPairInPreconditioner(*block1, *block2)) {
+          block_pairs_.insert(make_pair(*block1, *block2));
+        } else {
+          skipped_pairs.insert(make_pair(*block1, *block2));
+        }
+      }
+    }
+  }
+
+  // The remaining rows which do not contain any e_blocks.
+  for (; r < num_row_blocks; ++r) {
+    const CompressedRow& row = bs.rows[r];
+    CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
+    for (int i = 0; i < row.cells.size(); ++i) {
+      const int block1 = row.cells[i].block_id - num_eliminate_blocks;
+      for (int j = 0; j < row.cells.size(); ++j) {
+        const int block2 = row.cells[j].block_id - num_eliminate_blocks;
+        if (block1 <= block2) {
+          if (IsBlockPairInPreconditioner(block1, block2)) {
+            block_pairs_.insert(make_pair(block1, block2));
+          } else {
+            skipped_pairs.insert(make_pair(block1, block2));
+          }
+        }
+      }
+    }
+  }
+
+  VLOG(1) << "Block pair stats: "
+          << block_pairs_.size() << " included "
+          << skipped_pairs.size() << " excluded";
+}
+
+// Initialize the SchurEliminator.
+void VisibilityBasedPreconditioner::InitEliminator(
+    const CompressedRowBlockStructure& bs) {
+  LinearSolver::Options eliminator_options;
+  eliminator_options.num_eliminate_blocks = options_.num_eliminate_blocks;
+  eliminator_options.num_threads = options_.num_threads;
+  eliminator_options.constant_sparsity = true;
+
+  DetectStructure(bs, options_.num_eliminate_blocks,
+                  &eliminator_options.row_block_size,
+                  &eliminator_options.e_block_size,
+                  &eliminator_options.f_block_size);
+
+  eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
+  eliminator_->Init(options_.num_eliminate_blocks, &bs);
+}
+
+// Compute the values of the preconditioner matrix and factorize it.
+bool VisibilityBasedPreconditioner::Compute(const BlockSparseMatrixBase& A,
+                                            const double* D) {
+  const time_t start_time = time(NULL);
+  const int num_rows = m_->num_rows();
+  CHECK_GT(num_rows, 0);
+
+  // We need a dummy rhs vector and a dummy b vector since the Schur
+  // eliminator combines the computation of the reduced camera matrix
+  // with the computation of the right hand side of that linear
+  // system.
+  //
+  // TODO(sameeragarwal): Perhaps its worth refactoring the
+  // SchurEliminator::Eliminate function to allow NULL for the rhs. As
+  // of now it does not seem to be worth the effort.
+  Vector rhs = Vector::Zero(m_->num_rows());
+  Vector b = Vector::Zero(A.num_rows());
+
+  // Compute a subset of the entries of the Schur complement.
+  eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data());
+
+  // Try factorizing the matrix. For SCHUR_JACOBI and CLUSTER_JACOBI,
+  // this should always succeed modulo some numerical/conditioning
+  // problems. For CLUSTER_TRIDIAGONAL, in general the preconditioner
+  // matrix as constructed is not positive definite. However, we will
+  // go ahead and try factorizing it. If it works, great, otherwise we
+  // scale all the cells in the preconditioner corresponding to the
+  // edges in the degree-2 forest and that guarantees positive
+  // definiteness. The proof of this fact can be found in Lemma 1 in
+  // "Visibility Based Preconditioning for Bundle Adjustment".
+  //
+  // Doing the factorization like this saves us matrix mass when
+  // scaling is not needed, which is quite often in our experience.
+  bool status = Factorize();
+
+  // The scaling only affects the tri-diagonal case, since
+  // ScaleOffDiagonalBlocks only pays attenion to the cells that
+  // belong to the edges of the degree-2 forest. In the SCHUR_JACOBI
+  // and the CLUSTER_JACOBI cases, the preconditioner is guaranteed to
+  // be positive semidefinite.
+  if (!status && options_.preconditioner_type == CLUSTER_TRIDIAGONAL) {
+    VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
+            << "scaling";
+    ScaleOffDiagonalCells();
+    status = Factorize();
+  }
+
+  VLOG(2) << "Compute time: " << time(NULL) - start_time;
+  return status;
+}
+
+// Consider the preconditioner matrix as meta-block matrix, whose
+// blocks correspond to the clusters. Then cluster pairs corresponding
+// to edges in the degree-2 forest are off diagonal entries of this
+// matrix. Scaling these off-diagonal entries by 1/2 forces this
+// matrix to be positive definite.
+void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
+  for (set< pair<int, int> >::const_iterator it = block_pairs_.begin();
+       it != block_pairs_.end();
+       ++it) {
+    const int block1 = it->first;
+    const int block2 = it->second;
+    if (!IsBlockPairOffDiagonal(block1, block2)) {
+      continue;
+    }
+
+    int r, c, row_stride, col_stride;
+    CellInfo* cell_info = m_->GetCell(block1, block2,
+                                      &r, &c,
+                                      &row_stride, &col_stride);
+    CHECK(cell_info != NULL)
+        << "Cell missing for block pair (" << block1 << "," << block2 << ")"
+        << " cluster pair (" << cluster_membership_[block1]
+        << " " << cluster_membership_[block2] << ")";
+
+    // Ah the magic of tri-diagonal matrices and diagonal
+    // dominance. See Lemma 1 in "Visibility Based Preconditioning
+    // For Bundle Adjustment".
+    MatrixRef m(cell_info->values, row_stride, col_stride);
+    m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
+  }
+}
+
+// Compute the sparse Cholesky factorization of the preconditioner
+// matrix.
+bool VisibilityBasedPreconditioner::Factorize() {
+  // Extract the TripletSparseMatrix that is used for actually storing
+  // S and convert it into a cholmod_sparse object.
+  cholmod_sparse* lhs = ss_.CreateSparseMatrix(
+      down_cast<BlockRandomAccessSparseMatrix*>(
+          m_.get())->mutable_matrix());
+
+  // The matrix is symmetric, and the upper triangular part of the
+  // matrix contains the values.
+  lhs->stype = 1;
+
+  // Symbolic factorization is computed if we don't already have one
+  // handy.
+  if (factor_ == NULL) {
+    factor_ = ss_.AnalyzeCholesky(lhs);
+  }
+
+  bool status = ss_.Cholesky(lhs, factor_);
+  ss_.Free(lhs);
+  return status;
+}
+
+void VisibilityBasedPreconditioner::RightMultiply(const double* x,
+                                                  double* y) const {
+  CHECK_NOTNULL(x);
+  CHECK_NOTNULL(y);
+  SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_);
+
+  const int num_rows = m_->num_rows();
+  memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x));
+  cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_));
+  memcpy(y, solution->x, sizeof(*y) * num_rows);
+  ss->Free(solution);
+}
+
+int VisibilityBasedPreconditioner::num_rows() const {
+  return m_->num_rows();
+}
+
+// Classify camera/f_block pairs as in and out of the preconditioner,
+// based on whether the cluster pair that they belong to is in the
+// preconditioner or not.
+bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
+    const int block1,
+    const int block2) const {
+  int cluster1 = cluster_membership_[block1];
+  int cluster2 = cluster_membership_[block2];
+  if (cluster1 > cluster2) {
+    std::swap(cluster1, cluster2);
+  }
+  return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
+}
+
+bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
+    const int block1,
+    const int block2) const {
+  return (cluster_membership_[block1] != cluster_membership_[block2]);
+}
+
+// Convert a graph into a list of edges that includes self edges for
+// each vertex.
+void VisibilityBasedPreconditioner::ForestToClusterPairs(
+    const Graph<int>& forest,
+    HashSet<pair<int, int> >* cluster_pairs) const {
+  CHECK_NOTNULL(cluster_pairs)->clear();
+  const HashSet<int>& vertices = forest.vertices();
+  CHECK_EQ(vertices.size(), num_clusters_);
+
+  // Add all the cluster pairs corresponding to the edges in the
+  // forest.
+  for (HashSet<int>::const_iterator it1 = vertices.begin();
+       it1 != vertices.end();
+       ++it1) {
+    const int cluster1 = *it1;
+    cluster_pairs->insert(make_pair(cluster1, cluster1));
+    const HashSet<int>& neighbors = forest.Neighbors(cluster1);
+    for (HashSet<int>::const_iterator it2 = neighbors.begin();
+         it2 != neighbors.end();
+         ++it2) {
+      const int cluster2 = *it2;
+      if (cluster1 < cluster2) {
+        cluster_pairs->insert(make_pair(cluster1, cluster2));
+      }
+    }
+  }
+}
+
+// The visibilty set of a cluster is the union of the visibilty sets
+// of all its cameras. In other words, the set of points visible to
+// any camera in the cluster.
+void VisibilityBasedPreconditioner::ComputeClusterVisibility(
+    const vector<set<int> >& visibility,
+    vector<set<int> >* cluster_visibility) const {
+  CHECK_NOTNULL(cluster_visibility)->resize(0);
+  cluster_visibility->resize(num_clusters_);
+  for (int i = 0; i < num_blocks_; ++i) {
+    const int cluster_id = cluster_membership_[i];
+    (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
+                                             visibility[i].end());
+  }
+}
+
+// Construct a graph whose vertices are the clusters, and the edge
+// weights are the number of 3D points visible to cameras in both the
+// vertices.
+Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
+    const vector<set<int> >& cluster_visibility) const {
+  Graph<int>* cluster_graph = new Graph<int>;
+
+  for (int i = 0; i < num_clusters_; ++i) {
+    cluster_graph->AddVertex(i);
+  }
+
+  for (int i = 0; i < num_clusters_; ++i) {
+    const set<int>& cluster_i = cluster_visibility[i];
+    for (int j = i+1; j < num_clusters_; ++j) {
+      vector<int> intersection;
+      const set<int>& cluster_j = cluster_visibility[j];
+      set_intersection(cluster_i.begin(), cluster_i.end(),
+                       cluster_j.begin(), cluster_j.end(),
+                       back_inserter(intersection));
+
+      if (intersection.size() > 0) {
+        // Clusters interact strongly when they share a large number
+        // of 3D points. The degree-2 maximum spanning forest
+        // alorithm, iterates on the edges in decreasing order of
+        // their weight, which is the number of points shared by the
+        // two cameras that it connects.
+        cluster_graph->AddEdge(i, j, intersection.size());
+      }
+    }
+  }
+  return cluster_graph;
+}
+
+// Canonical views clustering returns a HashMap from vertices to
+// cluster ids. Convert this into a flat array for quick lookup. It is
+// possible that some of the vertices may not be associated with any
+// cluster. In that case, randomly assign them to one of the clusters.
+void VisibilityBasedPreconditioner::FlattenMembershipMap(
+    const HashMap<int, int>& membership_map,
+    vector<int>* membership_vector) const {
+  CHECK_NOTNULL(membership_vector)->resize(0);
+  membership_vector->resize(num_blocks_, -1);
+  // Iterate over the cluster membership map and update the
+  // cluster_membership_ vector assigning arbitrary cluster ids to
+  // the few cameras that have not been clustered.
+  for (HashMap<int, int>::const_iterator it = membership_map.begin();
+       it != membership_map.end();
+       ++it) {
+    const int camera_id = it->first;
+    int cluster_id = it->second;
+
+    // If the view was not clustered, randomly assign it to one of the
+    // clusters. This preserves the mathematical correctness of the
+    // preconditioner. If there are too many views which are not
+    // clustered, it may lead to some quality degradation though.
+    //
+    // TODO(sameeragarwal): Check if a large number of views have not
+    // been clustered and deal with it?
+    if (cluster_id == -1) {
+      cluster_id = camera_id % num_clusters_;
+    }
+
+    membership_vector->at(camera_id) = cluster_id;
+  }
+}
+
+#endif  // CERES_NO_SUITESPARSE
+
+}  // namespace internal
+}  // namespace ceres