Initial commit of Ceres Solver.
diff --git a/internal/ceres/visibility_based_preconditioner_test.cc b/internal/ceres/visibility_based_preconditioner_test.cc
new file mode 100644
index 0000000..390f081
--- /dev/null
+++ b/internal/ceres/visibility_based_preconditioner_test.cc
@@ -0,0 +1,363 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#ifndef CERES_NO_SUITESPARSE
+
+#include "ceres/visibility_based_preconditioner.h"
+
+#include <glog/logging.h>
+#include "ceres/file.h"
+#include "gtest/gtest.h"
+#include "Eigen/Dense"
+#include "ceres/block_random_access_dense_matrix.h"
+#include "ceres/block_random_access_sparse_matrix.h"
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/casts.h"
+#include "ceres/collections_port.h"
+#include "ceres/linear_least_squares_problems.h"
+#include "ceres/schur_eliminator.h"
+#include "ceres/stringprintf.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/internal/scoped_ptr.h"
+#include "ceres/types.h"
+
+DECLARE_string(test_srcdir);
+
+namespace ceres {
+namespace internal {
+
+using testing::AssertionResult;
+using testing::AssertionSuccess;
+using testing::AssertionFailure;
+
+static const double kTolerance = 1e-12;
+
+class VisibilityBasedPreconditionerTest : public ::testing::Test {
+ public:
+  static const int kCameraSize = 9;
+
+ protected:
+  void SetUp() {
+    string input_file =
+        JoinPath(FLAGS_test_srcdir,
+                       "problem-6-1384-000.lsqp"); // NOLINT
+
+    scoped_ptr<LinearLeastSquaresProblem> problem(
+        CHECK_NOTNULL(CreateLinearLeastSquaresProblemFromFile(input_file)));
+    A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
+    b_.reset(problem->b.release());
+    D_.reset(problem->D.release());
+
+    const CompressedRowBlockStructure* bs =
+        CHECK_NOTNULL(A_->block_structure());
+    const int num_col_blocks = bs->cols.size();
+
+    num_cols_ = A_->num_cols();
+    num_rows_ = A_->num_rows();
+    num_eliminate_blocks_ = problem->num_eliminate_blocks;
+    num_camera_blocks_ = num_col_blocks - num_eliminate_blocks_;
+    options_.num_eliminate_blocks = num_eliminate_blocks_;
+
+    vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
+    for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
+      blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
+    }
+
+    // The input matrix is a real jacobian and fairly poorly
+    // conditioned. Setting D to a large constant makes the normal
+    // equations better conditioned and makes the tests below better
+    // conditioned.
+    VectorRef(D_.get(), num_cols_).setConstant(10.0);
+
+    schur_complement_.reset(new BlockRandomAccessDenseMatrix(blocks));
+    Vector rhs(schur_complement_->num_rows());
+
+    scoped_ptr<SchurEliminatorBase> eliminator;
+    eliminator.reset(SchurEliminatorBase::Create(options_));
+    eliminator->Init(num_eliminate_blocks_, bs);
+    eliminator->Eliminate(A_.get(), b_.get(), D_.get(),
+                          schur_complement_.get(), rhs.data());
+  }
+
+
+  AssertionResult IsSparsityStructureValid() {
+    preconditioner_->InitStorage(*A_->block_structure());
+    const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
+    const vector<int>& cluster_membership = get_cluster_membership();
+
+    for (int i = 0; i < num_camera_blocks_; ++i) {
+      for (int j = i; j < num_camera_blocks_; ++j) {
+        if (cluster_pairs.count(make_pair(cluster_membership[i],
+                                          cluster_membership[j]))) {
+          if (!IsBlockPairInPreconditioner(i, j)) {
+            return AssertionFailure()
+                << "block pair (" << i << "," << j << "missing";
+          }
+        } else {
+          if (IsBlockPairInPreconditioner(i, j)) {
+            return AssertionFailure()
+                << "block pair (" << i << "," << j << "should not be present";
+          }
+        }
+      }
+    }
+    return AssertionSuccess();
+  }
+
+  AssertionResult PreconditionerValuesMatch() {
+    preconditioner_->Compute(*A_, D_.get());
+    const HashSet<pair<int, int> >& cluster_pairs = get_cluster_pairs();
+    const BlockRandomAccessSparseMatrix* m = get_m();
+    Matrix preconditioner_matrix;
+    m->matrix()->ToDenseMatrix(&preconditioner_matrix);
+    ConstMatrixRef full_schur_complement(schur_complement_->values(),
+                                         m->num_rows(),
+                                         m->num_rows());
+    const int num_clusters = get_num_clusters();
+    const int kDiagonalBlockSize =
+        kCameraSize * num_camera_blocks_ / num_clusters;
+
+    for (int i = 0; i < num_clusters; ++i) {
+      for (int j = i; j < num_clusters; ++j) {
+        double diff = 0.0;
+        if (cluster_pairs.count(make_pair(i, j))) {
+          diff =
+              (preconditioner_matrix.block(kDiagonalBlockSize * i,
+                                           kDiagonalBlockSize * j,
+                                           kDiagonalBlockSize,
+                                           kDiagonalBlockSize) -
+               full_schur_complement.block(kDiagonalBlockSize * i,
+                                           kDiagonalBlockSize * j,
+                                           kDiagonalBlockSize,
+                                           kDiagonalBlockSize)).norm();
+        } else {
+          diff = preconditioner_matrix.block(kDiagonalBlockSize * i,
+                                             kDiagonalBlockSize * j,
+                                             kDiagonalBlockSize,
+                                             kDiagonalBlockSize).norm();
+        }
+        if (diff > kTolerance) {
+          return AssertionFailure()
+              << "Preconditioner block " << i << " " << j << " differs "
+              << "from expected value by " << diff;
+        }
+      }
+    }
+    return AssertionSuccess();
+  }
+
+  // Accessors
+  int get_num_blocks() { return preconditioner_->num_blocks_; }
+
+  int get_num_clusters() { return preconditioner_->num_clusters_; }
+  int* get_mutable_num_clusters() { return &preconditioner_->num_clusters_; }
+
+  const vector<int>& get_block_size() {
+    return preconditioner_->block_size_; }
+
+  vector<int>* get_mutable_block_size() {
+    return &preconditioner_->block_size_; }
+
+  const vector<int>& get_cluster_membership() {
+    return preconditioner_->cluster_membership_;
+  }
+
+  vector<int>* get_mutable_cluster_membership() {
+    return &preconditioner_->cluster_membership_;
+  }
+
+  const set<pair<int, int> >& get_block_pairs() {
+    return preconditioner_->block_pairs_;
+  }
+
+  set<pair<int, int> >* get_mutable_block_pairs() {
+    return &preconditioner_->block_pairs_;
+  }
+
+  const HashSet<pair<int, int> >& get_cluster_pairs() {
+    return preconditioner_->cluster_pairs_;
+  }
+
+  HashSet<pair<int, int> >* get_mutable_cluster_pairs() {
+    return &preconditioner_->cluster_pairs_;
+  }
+
+  bool IsBlockPairInPreconditioner(const int block1, const int block2) {
+    return preconditioner_->IsBlockPairInPreconditioner(block1, block2);
+  }
+
+  bool IsBlockPairOffDiagonal(const int block1, const int block2) {
+    return preconditioner_->IsBlockPairOffDiagonal(block1, block2);
+  }
+
+  const BlockRandomAccessSparseMatrix* get_m() {
+    return preconditioner_->m_.get();
+  }
+
+  int num_rows_;
+  int num_cols_;
+  int num_eliminate_blocks_;
+  int num_camera_blocks_;
+
+  scoped_ptr<BlockSparseMatrix> A_;
+  scoped_array<double> b_;
+  scoped_array<double> D_;
+
+  LinearSolver::Options options_;
+  scoped_ptr<VisibilityBasedPreconditioner> preconditioner_;
+  scoped_ptr<BlockRandomAccessDenseMatrix> schur_complement_;
+};
+
+#ifndef CERES_DONT_HAVE_PROTOCOL_BUFFERS
+TEST_F(VisibilityBasedPreconditionerTest, SchurJacobiStructure) {
+  options_.preconditioner_type = SCHUR_JACOBI;
+  preconditioner_.reset(
+      new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
+  EXPECT_EQ(get_num_blocks(), num_camera_blocks_);
+  EXPECT_EQ(get_num_clusters(), num_camera_blocks_);
+  for (int i = 0; i < num_camera_blocks_; ++i) {
+    for (int j = 0; j < num_camera_blocks_; ++j) {
+      const string msg = StringPrintf("Camera pair: %d %d", i, j);
+      SCOPED_TRACE(msg);
+      if (i == j) {
+        EXPECT_TRUE(IsBlockPairInPreconditioner(i, j));
+        EXPECT_FALSE(IsBlockPairOffDiagonal(i, j));
+      } else {
+        EXPECT_FALSE(IsBlockPairInPreconditioner(i, j));
+        EXPECT_TRUE(IsBlockPairOffDiagonal(i, j));
+      }
+    }
+  }
+}
+
+TEST_F(VisibilityBasedPreconditionerTest, OneClusterClusterJacobi) {
+  options_.preconditioner_type = CLUSTER_JACOBI;
+  preconditioner_.reset(
+      new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
+
+  // Override the clustering to be a single clustering containing all
+  // the cameras.
+  vector<int>& cluster_membership = *get_mutable_cluster_membership();
+  for (int i = 0; i < num_camera_blocks_; ++i) {
+    cluster_membership[i] = 0;
+  }
+
+  *get_mutable_num_clusters() = 1;
+
+  HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
+  cluster_pairs.clear();
+  cluster_pairs.insert(make_pair(0, 0));
+
+  EXPECT_TRUE(IsSparsityStructureValid());
+  EXPECT_TRUE(PreconditionerValuesMatch());
+
+  // Multiplication by the inverse of the preconditioner.
+  const int num_rows = schur_complement_->num_rows();
+  ConstMatrixRef full_schur_complement(schur_complement_->values(),
+                                       num_rows,
+                                       num_rows);
+  Vector x(num_rows);
+  Vector y(num_rows);
+  Vector z(num_rows);
+
+  for (int i = 0; i < num_rows; ++i) {
+    x.setZero();
+    y.setZero();
+    z.setZero();
+    x[i] = 1.0;
+    preconditioner_->RightMultiply(x.data(), y.data());
+    z = full_schur_complement
+        .selfadjointView<Eigen::Upper>()
+        .ldlt().solve(x);
+    double max_relative_difference =
+        ((y - z).array() / z.array()).matrix().lpNorm<Eigen::Infinity>();
+    EXPECT_NEAR(max_relative_difference, 0.0, kTolerance);
+  }
+}
+
+
+
+TEST_F(VisibilityBasedPreconditionerTest, ClusterJacobi) {
+  options_.preconditioner_type = CLUSTER_JACOBI;
+  preconditioner_.reset(
+      new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
+
+  // Override the clustering to be equal number of cameras.
+  vector<int>& cluster_membership = *get_mutable_cluster_membership();
+  cluster_membership.resize(num_camera_blocks_);
+  static const int kNumClusters = 3;
+
+  for (int i = 0; i < num_camera_blocks_; ++i) {
+    cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
+  }
+  *get_mutable_num_clusters() = kNumClusters;
+
+  HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
+  cluster_pairs.clear();
+  for (int i = 0; i < kNumClusters; ++i) {
+    cluster_pairs.insert(make_pair(i, i));
+  }
+
+  EXPECT_TRUE(IsSparsityStructureValid());
+  EXPECT_TRUE(PreconditionerValuesMatch());
+}
+
+
+TEST_F(VisibilityBasedPreconditionerTest, ClusterTridiagonal) {
+  options_.preconditioner_type = CLUSTER_TRIDIAGONAL;
+  preconditioner_.reset(
+      new VisibilityBasedPreconditioner(*A_->block_structure(), options_));
+  static const int kNumClusters = 3;
+
+  // Override the clustering to be 3 clusters.
+  vector<int>& cluster_membership = *get_mutable_cluster_membership();
+  cluster_membership.resize(num_camera_blocks_);
+  for (int i = 0; i < num_camera_blocks_; ++i) {
+    cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;
+  }
+  *get_mutable_num_clusters() = kNumClusters;
+
+  // Spanning forest has structure 0-1 2
+  HashSet<pair<int, int> >& cluster_pairs = *get_mutable_cluster_pairs();
+  cluster_pairs.clear();
+  for (int i = 0; i < kNumClusters; ++i) {
+    cluster_pairs.insert(make_pair(i, i));
+  }
+  cluster_pairs.insert(make_pair(0, 1));
+
+  EXPECT_TRUE(IsSparsityStructureValid());
+  EXPECT_TRUE(PreconditionerValuesMatch());
+}
+#endif  // CERES_DONT_HAVE_PROTOCOL_BUFFERS
+
+}  // namespace internal
+}  // namespace ceres
+
+#endif  // CERES_NO_SUITESPARSE