Adding Wolfe line search algorithm and full BFGS search direction options.
Change-Id: I9d3fb117805bdfa5bc33613368f45ae8f10e0d79
diff --git a/include/ceres/solver.h b/include/ceres/solver.h
index 47c7e94..e7b8d09 100644
--- a/include/ceres/solver.h
+++ b/include/ceres/solver.h
@@ -60,14 +60,19 @@
Options() {
minimizer_type = TRUST_REGION;
line_search_direction_type = LBFGS;
- line_search_type = ARMIJO;
+ line_search_type = WOLFE;
nonlinear_conjugate_gradient_type = FLETCHER_REEVES;
max_lbfgs_rank = 20;
+ use_approximate_eigenvalue_bfgs_scaling = false;
line_search_interpolation_type = CUBIC;
min_line_search_step_size = 1e-9;
- armijo_sufficient_decrease = 1e-4;
- min_armijo_relative_step_size_change = 1e-3;
- max_armijo_relative_step_size_change = 0.6;
+ line_search_sufficient_function_decrease = 1e-4;
+ max_line_search_step_contraction = 1e-3;
+ min_line_search_step_contraction = 0.6;
+ max_num_line_search_step_size_iterations = 20;
+ max_num_line_search_direction_restarts = 5;
+ line_search_sufficient_curvature_decrease = 0.9;
+ max_line_search_step_expansion = 10.0;
trust_region_strategy_type = LEVENBERG_MARQUARDT;
dogleg_type = TRADITIONAL_DOGLEG;
@@ -178,6 +183,28 @@
// Limited Storage". Mathematics of Computation 35 (151): 773–782.
int max_lbfgs_rank;
+ // As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),
+ // the initial inverse Hessian approximation is taken to be the Identity.
+ // However, Oren showed that using instead I * \gamma, where \gamma is
+ // chosen to approximate an eigenvalue of the true inverse Hessian can
+ // result in improved convergence in a wide variety of cases. Setting
+ // use_approximate_eigenvalue_bfgs_scaling to true enables this scaling.
+ //
+ // It is important to note that approximate eigenvalue scaling does not
+ // always improve convergence, and that it can in fact significantly degrade
+ // performance for certain classes of problem, which is why it is disabled
+ // by default. In particular it can degrade performance when the
+ // sensitivity of the problem to different parameters varies significantly,
+ // as in this case a single scalar factor fails to capture this variation
+ // and detrimentally downscales parts of the jacobian approximation which
+ // correspond to low-sensitivity parameters. It can also reduce the
+ // robustness of the solution to errors in the jacobians.
+ //
+ // Oren S.S., Self-scaling variable metric (SSVM) algorithms
+ // Part II: Implementation and experiments, Management Science,
+ // 20(5), 863-874, 1974.
+ bool use_approximate_eigenvalue_bfgs_scaling;
+
// Degree of the polynomial used to approximate the objective
// function. Valid values are BISECTION, QUADRATIC and CUBIC.
//
@@ -189,7 +216,7 @@
// value, it is truncated to zero.
double min_line_search_step_size;
- // Armijo line search parameters.
+ // Line search parameters.
// Solving the line search problem exactly is computationally
// prohibitive. Fortunately, line search based optimization
@@ -201,19 +228,63 @@
//
// f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
//
- double armijo_sufficient_decrease;
+ double line_search_sufficient_function_decrease;
- // In each iteration of the Armijo line search,
+ // In each iteration of the line search,
//
- // new_step_size >= min_relative_step_size_change * step_size
+ // new_step_size >= max_line_search_step_contraction * step_size
//
- double min_armijo_relative_step_size_change;
+ // Note that by definition, for contraction:
+ //
+ // 0 < max_step_contraction < min_step_contraction < 1
+ //
+ double max_line_search_step_contraction;
- // In each iteration of the Armijo line search,
+ // In each iteration of the line search,
//
- // new_step_size <= max_relative_step_size_change * step_size
+ // new_step_size <= min_line_search_step_contraction * step_size
//
- double max_armijo_relative_step_size_change;
+ // Note that by definition, for contraction:
+ //
+ // 0 < max_step_contraction < min_step_contraction < 1
+ //
+ double min_line_search_step_contraction;
+
+ // Maximum number of trial step size iterations during each line search,
+ // if a step size satisfying the search conditions cannot be found within
+ // this number of trials, the line search will terminate.
+ int max_num_line_search_step_size_iterations;
+
+ // Maximum number of restarts of the line search direction algorithm before
+ // terminating the optimization. Restarts of the line search direction
+ // algorithm occur when the current algorithm fails to produce a new descent
+ // direction. This typically indicates a numerical failure, or a breakdown
+ // in the validity of the approximations used.
+ int max_num_line_search_direction_restarts;
+
+ // The strong Wolfe conditions consist of the Armijo sufficient
+ // decrease condition, and an additional requirement that the
+ // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
+ // conditions) of the gradient along the search direction
+ // decreases sufficiently. Precisely, this second condition
+ // is that we seek a step_size s.t.
+ //
+ // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
+ //
+ // Where f() is the line search objective and f'() is the derivative
+ // of f w.r.t step_size (d f / d step_size).
+ double line_search_sufficient_curvature_decrease;
+
+ // During the bracketing phase of the Wolfe search, the step size is
+ // increased until either a point satisfying the Wolfe conditions is
+ // found, or an upper bound for a bracket containing a point satisfying
+ // the conditions is found. Precisely, at each iteration of the
+ // expansion:
+ //
+ // new_step_size <= max_step_expansion * step_size.
+ //
+ // By definition for expansion, max_step_expansion > 1.0.
+ double max_line_search_step_expansion;
TrustRegionStrategyType trust_region_strategy_type;