New Trust region loop.
1. New TrustRegionMinimizer and basic tests for it.
2. New TrustRegionStrategy interface.
3. New LevenbergMarquardtStrategy and tests for it.
4. Updates to SolverImpl to reflect this.
5. Changes to Solver::Options and IterationSummary related to this.
6. Deleted levenberg_marquardt.cc/h/_test.cc
Change-Id: I6c1d1a7c774f014856f9f26263a830aa886e1400
diff --git a/internal/ceres/trust_region_minimizer_test.cc b/internal/ceres/trust_region_minimizer_test.cc
new file mode 100644
index 0000000..b4ef601
--- /dev/null
+++ b/internal/ceres/trust_region_minimizer_test.cc
@@ -0,0 +1,256 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: keir@google.com (Keir Mierle)
+// sameeragarwal@google.com (Sameer Agarwal)
+//
+// This tests the TrustRegionMinimizer loop using a direct Evaluator
+// implementation, rather than having a test that goes through all the
+// Program and Problem machinery.
+
+#include <cmath>
+#include "ceres/dense_qr_solver.h"
+#include "ceres/dense_sparse_matrix.h"
+#include "ceres/evaluator.h"
+#include "ceres/internal/port.h"
+#include "ceres/levenberg_marquardt_strategy.h"
+#include "ceres/linear_solver.h"
+#include "ceres/minimizer.h"
+#include "ceres/trust_region_minimizer.h"
+#include "gtest/gtest.h"
+
+namespace ceres {
+namespace internal {
+
+// Templated Evaluator for Powell's function. The template parameters
+// indicate which of the four variables/columns of the jacobian are
+// active. This is equivalent to constructing a problem and using the
+// SubsetLocalParameterization. This allows us to test the support for
+// the Evaluator::Plus operation besides checking for the basic
+// performance of the LevenbergMarquardt algorithm.
+template <bool col1, bool col2, bool col3, bool col4>
+class PowellEvaluator2 : public Evaluator {
+ public:
+ PowellEvaluator2()
+ : num_active_cols_(
+ (col1 ? 1 : 0) +
+ (col2 ? 1 : 0) +
+ (col3 ? 1 : 0) +
+ (col4 ? 1 : 0)) {
+ VLOG(1) << "Columns: "
+ << col1 << " "
+ << col2 << " "
+ << col3 << " "
+ << col4;
+ }
+
+ virtual ~PowellEvaluator2() {}
+
+ // Implementation of Evaluator interface.
+ virtual SparseMatrix* CreateJacobian() const {
+ CHECK(col1 || col2 || col3 || col4);
+ DenseSparseMatrix* dense_jacobian =
+ new DenseSparseMatrix(NumResiduals(), NumEffectiveParameters());
+ dense_jacobian->SetZero();
+ return dense_jacobian;
+ }
+
+ virtual bool Evaluate(const double* state,
+ double* cost,
+ double* residuals,
+ SparseMatrix* jacobian) {
+ double x1 = state[0];
+ double x2 = state[1];
+ double x3 = state[2];
+ double x4 = state[3];
+
+ VLOG(1) << "State: "
+ << "x1=" << x1 << ", "
+ << "x2=" << x2 << ", "
+ << "x3=" << x3 << ", "
+ << "x4=" << x4 << ".";
+
+ double f1 = x1 + 10.0 * x2;
+ double f2 = sqrt(5.0) * (x3 - x4);
+ double f3 = pow(x2 - 2.0 * x3, 2.0);
+ double f4 = sqrt(10.0) * pow(x1 - x4, 2.0);
+
+ VLOG(1) << "Function: "
+ << "f1=" << f1 << ", "
+ << "f2=" << f2 << ", "
+ << "f3=" << f3 << ", "
+ << "f4=" << f4 << ".";
+
+ *cost = (f1*f1 + f2*f2 + f3*f3 + f4*f4) / 2.0;
+
+ VLOG(1) << "Cost: " << *cost;
+
+ if (residuals != NULL) {
+ residuals[0] = f1;
+ residuals[1] = f2;
+ residuals[2] = f3;
+ residuals[3] = f4;
+ }
+
+ if (jacobian != NULL) {
+ DenseSparseMatrix* dense_jacobian;
+ dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian);
+ dense_jacobian->SetZero();
+
+ AlignedMatrixRef jacobian_matrix = dense_jacobian->mutable_matrix();
+ CHECK_EQ(jacobian_matrix.cols(), num_active_cols_);
+
+ int column_index = 0;
+ if (col1) {
+ jacobian_matrix.col(column_index++) <<
+ 1.0,
+ 0.0,
+ 0.0,
+ sqrt(10) * 2.0 * (x1 - x4) * (1.0 - x4);
+ }
+ if (col2) {
+ jacobian_matrix.col(column_index++) <<
+ 10.0,
+ 0.0,
+ 2.0*(x2 - 2.0*x3)*(1.0 - 2.0*x3),
+ 0.0;
+ }
+
+ if (col3) {
+ jacobian_matrix.col(column_index++) <<
+ 0.0,
+ sqrt(5.0),
+ 2.0*(x2 - 2.0*x3)*(x2 - 2.0),
+ 0.0;
+ }
+
+ if (col4) {
+ jacobian_matrix.col(column_index++) <<
+ 0.0,
+ -sqrt(5.0),
+ 0.0,
+ sqrt(10) * 2.0 * (x1 - x4) * (x1 - 1.0);
+ }
+ VLOG(1) << "\n" << jacobian_matrix;
+ }
+ return true;
+ }
+
+ virtual bool Plus(const double* state,
+ const double* delta,
+ double* state_plus_delta) const {
+ int delta_index = 0;
+ state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]);
+ state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]);
+ state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]);
+ state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]);
+ return true;
+ }
+
+ virtual int NumEffectiveParameters() const { return num_active_cols_; }
+ virtual int NumParameters() const { return 4; }
+ virtual int NumResiduals() const { return 4; }
+
+ private:
+ const int num_active_cols_;
+};
+
+// Templated function to hold a subset of the columns fixed and check
+// if the solver converges to the optimal values or not.
+template<bool col1, bool col2, bool col3, bool col4>
+void IsLevenbergMarquardtSolveSuccessful() {
+ Solver::Options solver_options;
+ LinearSolver::Options linear_solver_options;
+ DenseQRSolver linear_solver(linear_solver_options);
+
+ double parameters[4] = { 3, -1, 0, 1.0 };
+
+ // If the column is inactive, then set its value to the optimal
+ // value.
+ parameters[0] = (col1 ? parameters[0] : 0.0);
+ parameters[1] = (col2 ? parameters[1] : 0.0);
+ parameters[2] = (col3 ? parameters[2] : 0.0);
+ parameters[3] = (col4 ? parameters[3] : 0.0);
+
+ PowellEvaluator2<col1, col2, col3, col4> powell_evaluator;
+ scoped_ptr<SparseMatrix> jacobian(powell_evaluator.CreateJacobian());
+
+ Minimizer::Options minimizer_options(solver_options);
+ minimizer_options.gradient_tolerance = 1e-26;
+ minimizer_options.function_tolerance = 1e-26;
+ minimizer_options.parameter_tolerance = 1e-26;
+ minimizer_options.evaluator = &powell_evaluator;
+ minimizer_options.jacobian = jacobian.get();
+
+ TrustRegionStrategy::Options trust_region_strategy_options;
+ trust_region_strategy_options.linear_solver = &linear_solver;
+ trust_region_strategy_options.initial_radius = 1e4;
+ trust_region_strategy_options.max_radius = 1e20;
+ trust_region_strategy_options.lm_min_diagonal = 1e-6;
+ trust_region_strategy_options.lm_max_diagonal = 1e32;
+ scoped_ptr<TrustRegionStrategy> strategy(
+ TrustRegionStrategy::Create(trust_region_strategy_options));
+ minimizer_options.trust_region_strategy = strategy.get();
+
+ TrustRegionMinimizer minimizer;
+ Solver::Summary summary;
+ minimizer.Minimize(minimizer_options, parameters, &summary);
+
+ // The minimum is at x1 = x2 = x3 = x4 = 0.
+ EXPECT_NEAR(0.0, parameters[0], 0.001);
+ EXPECT_NEAR(0.0, parameters[1], 0.001);
+ EXPECT_NEAR(0.0, parameters[2], 0.001);
+ EXPECT_NEAR(0.0, parameters[3], 0.001);
+};
+
+TEST(TrustRegionMinimizer, PowellsSingularFunction) {
+ // This case is excluded because this has a local minimum and does
+ // not find the optimum. This should not affect the correctness of
+ // this test since we are testing all the other 14 combinations of
+ // column activations.
+ //
+ // IsSolveSuccessful<true, true, false, true>();
+
+ IsLevenbergMarquardtSolveSuccessful<true, true, true, true>();
+ IsLevenbergMarquardtSolveSuccessful<true, true, true, false>();
+ IsLevenbergMarquardtSolveSuccessful<true, false, true, true>();
+ IsLevenbergMarquardtSolveSuccessful<false, true, true, true>();
+ IsLevenbergMarquardtSolveSuccessful<true, true, false, false>();
+ IsLevenbergMarquardtSolveSuccessful<true, false, true, false>();
+ IsLevenbergMarquardtSolveSuccessful<false, true, true, false>();
+ IsLevenbergMarquardtSolveSuccessful<true, false, false, true>();
+ IsLevenbergMarquardtSolveSuccessful<false, true, false, true>();
+ IsLevenbergMarquardtSolveSuccessful<false, false, true, true>();
+ IsLevenbergMarquardtSolveSuccessful<true, false, false, false>();
+ IsLevenbergMarquardtSolveSuccessful<false, true, false, false>();
+ IsLevenbergMarquardtSolveSuccessful<false, false, true, false>();
+ IsLevenbergMarquardtSolveSuccessful<false, false, false, true>();
+}
+
+} // namespace internal
+} // namespace ceres