Add a polynomial solver
Add a function to find the (complex) roots of a polynomial
with real coefficients. The roots are extracted as the
eigenvalues of the (balanced) companion matrix. Also adds a test.
The polynomial solver will be needed in the Dogleg subspace
strategy.
Change-Id: Ia6626158819efb858522b7f4998649ca010d6688
diff --git a/internal/ceres/CMakeLists.txt b/internal/ceres/CMakeLists.txt
index 2914601..0d33a86 100644
--- a/internal/ceres/CMakeLists.txt
+++ b/internal/ceres/CMakeLists.txt
@@ -62,6 +62,7 @@
loss_function.cc
normal_prior.cc
partitioned_matrix_view.cc
+ polynomial_solver.cc
problem.cc
problem_impl.cc
program.cc
@@ -198,6 +199,7 @@
CERES_TEST(numeric_diff_cost_function)
CERES_TEST(parameter_block)
CERES_TEST(partitioned_matrix_view)
+ CERES_TEST(polynomial_solver)
CERES_TEST(problem)
CERES_TEST(residual_block)
CERES_TEST(residual_block_utils)
diff --git a/internal/ceres/polynomial_solver.cc b/internal/ceres/polynomial_solver.cc
new file mode 100644
index 0000000..91c6001
--- /dev/null
+++ b/internal/ceres/polynomial_solver.cc
@@ -0,0 +1,187 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: moll.markus@arcor.de (Markus Moll)
+
+#include "ceres/polynomial_solver.h"
+
+#include <glog/logging.h>
+#include <cmath>
+#include <cstddef>
+
+#include "Eigen/Dense"
+#include "ceres/internal/port.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+// Balancing function as described by B. N. Parlett and C. Reinsch,
+// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
+// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
+// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
+void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
+ CHECK_NOTNULL(companion_matrix_ptr);
+ Matrix& companion_matrix = *companion_matrix_ptr;
+ Matrix companion_matrix_offdiagonal = companion_matrix;
+ companion_matrix_offdiagonal.diagonal().setZero();
+
+ const int degree = companion_matrix.rows();
+
+ // gamma <= 1 controls how much a change in the scaling has to
+ // lower the 1-norm of the companion matrix to be accepted.
+ //
+ // gamma = 1 seems to lead to cycles (numerical issues?), so
+ // we set it slightly lower.
+ const double gamma = 0.9;
+
+ // Greedily scale row/column pairs until there is no change.
+ bool scaling_has_changed;
+ do {
+ scaling_has_changed = false;
+
+ for (int i = 0; i < degree; ++i) {
+ const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
+ const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
+
+ // Decompose row_norm/col_norm into mantissa * 2^exponent,
+ // where 0.5 <= mantissa < 1. Discard mantissa (return value
+ // of frexp), as only the exponent is needed.
+ int exponent = 0;
+ std::frexp(row_norm / col_norm, &exponent);
+ exponent /= 2;
+
+ if (exponent != 0) {
+ const double scaled_col_norm = std::ldexp(col_norm, exponent);
+ const double scaled_row_norm = std::ldexp(row_norm, -exponent);
+ if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
+ // Accept the new scaling. (Multiplication by powers of 2 should not
+ // introduce rounding errors (ignoring non-normalized numbers and
+ // over- or underflow))
+ scaling_has_changed = true;
+ companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
+ companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
+ }
+ }
+ }
+ } while (scaling_has_changed);
+
+ companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
+ companion_matrix = companion_matrix_offdiagonal;
+ VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
+}
+
+void BuildCompanionMatrix(const Vector& polynomial,
+ Matrix* companion_matrix_ptr) {
+ CHECK_NOTNULL(companion_matrix_ptr);
+ Matrix& companion_matrix = *companion_matrix_ptr;
+
+ const int degree = polynomial.size() - 1;
+
+ companion_matrix.resize(degree, degree);
+ companion_matrix.setZero();
+ companion_matrix.diagonal(-1).setOnes();
+ companion_matrix.col(degree-1) = -polynomial.reverse().head(degree-1);
+}
+
+// Remove leading terms with zero coefficients.
+Vector RemoveLeadingZeros(const Vector& polynomial_in) {
+ int i = 0;
+ while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
+ ++i;
+ }
+ return polynomial_in.tail(polynomial_in.size() - i);
+}
+} // namespace
+
+bool FindPolynomialRoots(const Vector& polynomial_in,
+ Vector* real,
+ Vector* imaginary) {
+ const double epsilon = std::numeric_limits<double>::epsilon();
+
+ if (polynomial_in.size() == 0) {
+ LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
+ return false;
+ }
+
+ Vector polynomial = RemoveLeadingZeros(polynomial_in);
+ const int degree = polynomial.size() - 1;
+
+ // Is the polynomial constant?
+ if (degree == 0) {
+ LOG(WARNING) << "Trying to extract roots from a constant "
+ << "polynomial in FindPolynomialRoots";
+ return true;
+ }
+
+ // Divide by leading term
+ const double leading_term = polynomial(0);
+ polynomial /= leading_term;
+
+ // Separately handle linear polynomials.
+ if (degree == 1) {
+ if (real != NULL) {
+ real->resize(1);
+ (*real)(0) = -polynomial(1);
+ }
+ if (imaginary != NULL) {
+ imaginary->resize(1);
+ imaginary->setZero();
+ }
+ }
+
+ // The degree is now known to be at least 2.
+ // Build and balance the companion matrix to the polynomial.
+ Matrix companion_matrix(degree, degree);
+ BuildCompanionMatrix(polynomial, &companion_matrix);
+ BalanceCompanionMatrix(&companion_matrix);
+
+ // Find its (complex) eigenvalues.
+ Eigen::EigenSolver<Matrix> solver(companion_matrix,
+ Eigen::EigenvaluesOnly);
+ if (solver.info() != Eigen::Success) {
+ LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
+ return false;
+ }
+
+ // Output roots
+ if (real != NULL) {
+ *real = solver.eigenvalues().real();
+ } else {
+ LOG(WARNING) << "NULL pointer passed as real argument to "
+ << "FindPolynomialRoots. Real parts of the roots will not "
+ << "be returned.";
+ }
+ if (imaginary != NULL) {
+ *imaginary = solver.eigenvalues().imag();
+ }
+ return true;
+}
+
+} // namespace internal
+} // namespace ceres
diff --git a/internal/ceres/polynomial_solver.h b/internal/ceres/polynomial_solver.h
new file mode 100644
index 0000000..1cf07dd
--- /dev/null
+++ b/internal/ceres/polynomial_solver.h
@@ -0,0 +1,65 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: moll.markus@arcor.de (Markus Moll)
+
+#ifndef CERES_INTERNAL_POLYNOMIAL_SOLVER_H_
+#define CERES_INTERNAL_POLYNOMIAL_SOLVER_H_
+
+#include "ceres/internal/eigen.h"
+
+namespace ceres {
+namespace internal {
+
+// Use the companion matrix eigenvalues to determine the roots of the polynomial
+//
+// sum_{i=0}^N polynomial(i) x^{N-i}.
+//
+// This function returns true on success, false otherwise.
+// Failure indicates that the polynomial is invalid (of size 0) or
+// that the eigenvalues of the companion matrix could not be computed.
+// On failure, a more detailed message will be written to LOG(ERROR).
+// If real is not NULL, the real parts of the roots will be returned in it.
+// Likewise, if imaginary is not NULL, imaginary parts will be returned in it.
+bool FindPolynomialRoots(const Vector& polynomial,
+ Vector* real,
+ Vector* imaginary);
+
+// Evaluate the polynomial at x using the Horner scheme.
+inline double EvaluatePolynomial(const Vector& polynomial, double x) {
+ double v = 0.0;
+ for (int i = 0; i < polynomial.size(); ++i) {
+ v = v * x + polynomial(i);
+ }
+ return v;
+}
+
+} // namespace internal
+} // namespace ceres
+
+#endif // CERES_INTERNAL_POLYNOMIAL_SOLVER_H_
diff --git a/internal/ceres/polynomial_solver_test.cc b/internal/ceres/polynomial_solver_test.cc
new file mode 100644
index 0000000..ae347fb
--- /dev/null
+++ b/internal/ceres/polynomial_solver_test.cc
@@ -0,0 +1,223 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2012 Google Inc. All rights reserved.
+// http://code.google.com/p/ceres-solver/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: moll.markus@arcor.de (Markus Moll)
+
+#include "ceres/polynomial_solver.h"
+
+#include <limits>
+#include <cmath>
+#include <cstddef>
+#include <algorithm>
+#include "gtest/gtest.h"
+#include "ceres/test_util.h"
+
+namespace ceres {
+namespace internal {
+namespace {
+
+// For IEEE-754 doubles, machine precision is about 2e-16.
+const double kEpsilon = 1e-13;
+const double kEpsilonLoose = 1e-9;
+
+// Return the constant polynomial p(x) = 1.23.
+Vector ConstantPolynomial(double value) {
+ Vector poly(1);
+ poly(0) = value;
+ return poly;
+}
+
+// Return the polynomial p(x) = poly(x) * (x - root).
+Vector AddRealRoot(const Vector& poly, double root) {
+ Vector poly2(poly.size() + 1);
+ poly2.setZero();
+ poly2.head(poly.size()) += poly;
+ poly2.tail(poly.size()) -= root * poly;
+ return poly2;
+}
+
+// Return the polynomial
+// p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).
+Vector AddComplexRootPair(const Vector& poly, double real, double imag) {
+ Vector poly2(poly.size() + 2);
+ poly2.setZero();
+ // Multiply poly by x^2 - 2real + abs(real,imag)^2
+ poly2.head(poly.size()) += poly;
+ poly2.segment(1, poly.size()) -= 2 * real * poly;
+ poly2.tail(poly.size()) += (real*real + imag*imag) * poly;
+ return poly2;
+}
+
+// Sort the entries in a vector.
+// Needed because the roots are not returned in sorted order.
+Vector SortVector(const Vector& in) {
+ Vector out(in);
+ std::sort(out.data(), out.data() + out.size());
+ return out;
+}
+
+// Run a test with the polynomial defined by the N real roots in roots_real.
+// If use_real is false, NULL is passed as the real argument to
+// FindPolynomialRoots. If use_imaginary is false, NULL is passed as the
+// imaginary argument to FindPolynomialRoots.
+template<int N>
+void RunPolynomialTestRealRoots(const double (&real_roots)[N],
+ bool use_real,
+ bool use_imaginary,
+ double epsilon) {
+ Vector real;
+ Vector imaginary;
+ Vector poly = ConstantPolynomial(1.23);
+ for (int i = 0; i < N; ++i) {
+ poly = AddRealRoot(poly, real_roots[i]);
+ }
+ Vector* const real_ptr = use_real ? &real : NULL;
+ Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;
+ bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);
+
+ EXPECT_EQ(success, true);
+ if (use_real) {
+ EXPECT_EQ(real.size(), N);
+ real = SortVector(real);
+ ExpectArraysClose(N, real.data(), real_roots, epsilon);
+ }
+ if (use_imaginary) {
+ EXPECT_EQ(imaginary.size(), N);
+ const Vector zeros = Vector::Zero(N);
+ ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);
+ }
+}
+} // namespace
+
+TEST(PolynomialSolver, InvalidPolynomialOfZeroLengthIsRejected) {
+ // Vector poly(0) is an ambiguous constructor call, so
+ // use the constructor with explicit column count.
+ Vector poly(0, 1);
+ Vector real;
+ Vector imag;
+ bool success = FindPolynomialRoots(poly, &real, &imag);
+
+ EXPECT_EQ(success, false);
+}
+
+TEST(PolynomialSolver, ConstantPolynomialReturnsNoRoots) {
+ Vector poly = ConstantPolynomial(1.23);
+ Vector real;
+ Vector imag;
+ bool success = FindPolynomialRoots(poly, &real, &imag);
+
+ EXPECT_EQ(success, true);
+ EXPECT_EQ(real.size(), 0);
+ EXPECT_EQ(imag.size(), 0);
+}
+
+TEST(PolynomialSolver, LinearPolynomialWithPositiveRootWorks) {
+ const double roots[1] = { 42.42 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, LinearPolynomialWithNegativeRootWorks) {
+ const double roots[1] = { -42.42 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, QuadraticPolynomialWithPositiveRootsWorks) {
+ const double roots[2] = { 1.0, 42.42 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, QuadraticPolynomialWithOneNegativeRootWorks) {
+ const double roots[2] = { -42.42, 1.0 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, QuadraticPolynomialWithTwoNegativeRootsWorks) {
+ const double roots[2] = { -42.42, -1.0 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, QuadraticPolynomialWithCloseRootsWorks) {
+ const double roots[2] = { 42.42, 42.43 };
+ RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);
+}
+
+TEST(PolynomialSolver, QuadraticPolynomialWithComplexRootsWorks) {
+ Vector real;
+ Vector imag;
+
+ Vector poly = ConstantPolynomial(1.23);
+ poly = AddComplexRootPair(poly, 42.42, 4.2);
+ bool success = FindPolynomialRoots(poly, &real, &imag);
+
+ EXPECT_EQ(success, true);
+ EXPECT_EQ(real.size(), 2);
+ EXPECT_EQ(imag.size(), 2);
+ ExpectClose(real(0), 42.42, kEpsilon);
+ ExpectClose(real(1), 42.42, kEpsilon);
+ ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);
+ ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);
+ ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);
+}
+
+TEST(PolynomialSolver, QuarticPolynomialWorks) {
+ const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {
+ const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
+}
+
+TEST(PolynomialSolver, QuarticPolynomialWithTwoZeroRootsWorks) {
+ const double roots[4] = { -42.42, 0.0, 0.0, 42.42 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);
+}
+
+TEST(PolynomialSolver, QuarticMonomialWorks) {
+ const double roots[4] = { 0.0, 0.0, 0.0, 0.0 };
+ RunPolynomialTestRealRoots(roots, true, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, NullPointerAsImaginaryPartWorks) {
+ const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
+ RunPolynomialTestRealRoots(roots, true, false, kEpsilon);
+}
+
+TEST(PolynomialSolver, NullPointerAsRealPartWorks) {
+ const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
+ RunPolynomialTestRealRoots(roots, false, true, kEpsilon);
+}
+
+TEST(PolynomialSolver, BothOutputArgumentsNullWorks) {
+ const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };
+ RunPolynomialTestRealRoots(roots, false, false, kEpsilon);
+}
+
+} // namespace internal
+} // namespace ceres