More pre-ordering support.
1. CX_SPARSE supports pre-ordering of the jacobian.
2. Add support for constrained approximate minimum degree ordering
for SuiteSparse versions >= 4.2.0
3. Using 2, support for pre-ordering for SPARSE_SCHUR when used
with SUITE_SPARSE.
4. Using 2, support for user orderings in SPARSE_NORMAL_CHOLESKY.
5. Minor cleanups in documentation and code all around.
6. Test update and refactoring.
Change-Id: Ibfe3ac95d59d54ab14d1d60a07f767688070f29f
diff --git a/internal/ceres/solver_impl.cc b/internal/ceres/solver_impl.cc
index 5779299..52056f7 100644
--- a/internal/ceres/solver_impl.cc
+++ b/internal/ceres/solver_impl.cc
@@ -33,7 +33,9 @@
#include <cstdio>
#include <iostream> // NOLINT
#include <numeric>
+#include <string>
#include "ceres/coordinate_descent_minimizer.h"
+#include "ceres/cxsparse.h"
#include "ceres/evaluator.h"
#include "ceres/gradient_checking_cost_function.h"
#include "ceres/iteration_callback.h"
@@ -995,7 +997,9 @@
}
if (IsSchurType(options->linear_solver_type)) {
- if (!ReorderProgramForSchurTypeLinearSolver(problem_impl->parameter_map(),
+ if (!ReorderProgramForSchurTypeLinearSolver(options->linear_solver_type,
+ options->sparse_linear_algebra_library,
+ problem_impl->parameter_map(),
linear_solver_ordering,
transformed_program.get(),
error)) {
@@ -1004,9 +1008,15 @@
return transformed_program.release();
}
- if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
- options->sparse_linear_algebra_library == SUITE_SPARSE) {
- ReorderProgramForSparseNormalCholesky(transformed_program.get());
+ if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) {
+ if (!ReorderProgramForSparseNormalCholesky(
+ options->sparse_linear_algebra_library,
+ linear_solver_ordering,
+ transformed_program.get(),
+ error)) {
+ return NULL;
+ }
+
return transformed_program.release();
}
@@ -1093,6 +1103,18 @@
linear_solver_options.sparse_linear_algebra_library =
options->sparse_linear_algebra_library;
linear_solver_options.use_postordering = options->use_postordering;
+
+ // Ignore user's postordering preferences and force it to be true if
+ // cholmod_camd is not available. This ensures that the linear
+ // solver does not assume that a fill-reducing pre-ordering has been
+ // done.
+#if !defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CAMD)
+ if (IsSchurType(linear_solver_options.type) &&
+ linear_solver_options.sparse_linear_algebra_library == SUITE_SPARSE) {
+ linear_solver_options.use_postordering = true;
+ }
+#endif
+
linear_solver_options.num_threads = options->num_linear_solver_threads;
options->num_linear_solver_threads = linear_solver_options.num_threads;
@@ -1115,48 +1137,6 @@
return LinearSolver::Create(linear_solver_options);
}
-bool SolverImpl::ApplyUserOrdering(
- const ProblemImpl::ParameterMap& parameter_map,
- const ParameterBlockOrdering* ordering,
- Program* program,
- string* error) {
- if (ordering->NumElements() != program->NumParameterBlocks()) {
- *error = StringPrintf("User specified ordering does not have the same "
- "number of parameters as the problem. The problem"
- "has %d blocks while the ordering has %d blocks.",
- program->NumParameterBlocks(),
- ordering->NumElements());
- return false;
- }
-
- vector<ParameterBlock*>* parameter_blocks =
- program->mutable_parameter_blocks();
- parameter_blocks->clear();
-
- const map<int, set<double*> >& groups =
- ordering->group_to_elements();
-
- for (map<int, set<double*> >::const_iterator group_it = groups.begin();
- group_it != groups.end();
- ++group_it) {
- const set<double*>& group = group_it->second;
- for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
- parameter_block_ptr_it != group.end();
- ++parameter_block_ptr_it) {
- ProblemImpl::ParameterMap::const_iterator parameter_block_it =
- parameter_map.find(*parameter_block_ptr_it);
- if (parameter_block_it == parameter_map.end()) {
- *error = StringPrintf("User specified ordering contains a pointer "
- "to a double that is not a parameter block in "
- "the problem. The invalid double is in group: %d",
- group_it->first);
- return false;
- }
- parameter_blocks->push_back(parameter_block_it->second);
- }
- }
- return true;
-}
// Find the minimum index of any parameter block to the given residual.
// Parameter blocks that have indices greater than num_eliminate_blocks are
@@ -1364,64 +1344,51 @@
LOG(WARNING) << msg;
}
-bool SolverImpl::ReorderProgramForSchurTypeLinearSolver(
+bool SolverImpl::ApplyUserOrdering(
const ProblemImpl::ParameterMap& parameter_map,
- ParameterBlockOrdering* ordering,
+ const ParameterBlockOrdering* parameter_block_ordering,
Program* program,
string* error) {
- // At this point one of two things is true.
- //
- // 1. The user did not specify an ordering - ordering has one group
- // containing all the parameter blocks.
-
- // 2. The user specified an ordering, and the first group has
- // non-zero elements.
- //
- // We handle these two cases in turn.
- if (ordering->NumGroups() == 1) {
- // If the user supplied an ordering with just one
- // group, it is equivalent to the user supplying NULL as an
- // ordering. Ceres is completely free to choose the parameter
- // block ordering as it sees fit. For Schur type solvers, this
- // means that the user wishes for Ceres to identify the e_blocks,
- // which we do by computing a maximal independent set.
- vector<ParameterBlock*> schur_ordering;
- const int num_eliminate_blocks = ComputeSchurOrdering(*program,
- &schur_ordering);
-
- CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
- << "Congratulations, you found a Ceres bug! Please report this error "
- << "to the developers.";
-
- // Update the ordering object.
- for (int i = 0; i < schur_ordering.size(); ++i) {
- double* parameter_block = schur_ordering[i]->mutable_user_state();
- const int group_id = (i < num_eliminate_blocks) ? 0 : 1;
- ordering->AddElementToGroup(parameter_block, group_id);
- }
-
- // Apply the parameter block re-ordering. Technically we could
- // call ApplyUserOrdering, but this is cheaper and simpler.
- swap(*program->mutable_parameter_blocks(), schur_ordering);
- } else {
- // The user supplied an ordering.
- if (!ApplyUserOrdering(parameter_map, ordering, program, error)) {
- return false;
- }
+ const int num_parameter_blocks = program->NumParameterBlocks();
+ if (parameter_block_ordering->NumElements() != num_parameter_blocks) {
+ *error = StringPrintf("User specified ordering does not have the same "
+ "number of parameters as the problem. The problem"
+ "has %d blocks while the ordering has %d blocks.",
+ num_parameter_blocks,
+ parameter_block_ordering->NumElements());
+ return false;
}
- program->SetParameterOffsetsAndIndex();
+ vector<ParameterBlock*>* parameter_blocks =
+ program->mutable_parameter_blocks();
+ parameter_blocks->clear();
- const int num_eliminate_blocks =
- ordering->group_to_elements().begin()->second.size();
+ const map<int, set<double*> >& groups =
+ parameter_block_ordering->group_to_elements();
- // Schur type solvers also require that their residual blocks be
- // lexicographically ordered.
- return LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
- program,
- error);
+ for (map<int, set<double*> >::const_iterator group_it = groups.begin();
+ group_it != groups.end();
+ ++group_it) {
+ const set<double*>& group = group_it->second;
+ for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
+ parameter_block_ptr_it != group.end();
+ ++parameter_block_ptr_it) {
+ ProblemImpl::ParameterMap::const_iterator parameter_block_it =
+ parameter_map.find(*parameter_block_ptr_it);
+ if (parameter_block_it == parameter_map.end()) {
+ *error = StringPrintf("User specified ordering contains a pointer "
+ "to a double that is not a parameter block in "
+ "the problem. The invalid double is in group: %d",
+ group_it->first);
+ return false;
+ }
+ parameter_blocks->push_back(parameter_block_it->second);
+ }
+ }
+ return true;
}
+
TripletSparseMatrix* SolverImpl::CreateJacobianBlockSparsityTranspose(
const Program* program) {
@@ -1468,34 +1435,185 @@
return tsm;
}
-void SolverImpl::ReorderProgramForSparseNormalCholesky(Program* program) {
-#ifndef CERES_NO_SUITESPARSE
- // Set the offsets and index for CreateJacobianSparsityTranspose.
- program->SetParameterOffsetsAndIndex();
+bool SolverImpl::ReorderProgramForSchurTypeLinearSolver(
+ const LinearSolverType linear_solver_type,
+ const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
+ const ProblemImpl::ParameterMap& parameter_map,
+ ParameterBlockOrdering* parameter_block_ordering,
+ Program* program,
+ string* error) {
+ if (parameter_block_ordering->NumGroups() == 1) {
+ // If the user supplied an parameter_block_ordering with just one
+ // group, it is equivalent to the user supplying NULL as an
+ // parameter_block_ordering. Ceres is completely free to choose the
+ // parameter block ordering as it sees fit. For Schur type solvers,
+ // this means that the user wishes for Ceres to identify the
+ // e_blocks, which we do by computing a maximal independent set.
+ vector<ParameterBlock*> schur_ordering;
+ const int num_eliminate_blocks = ComputeSchurOrdering(*program,
+ &schur_ordering);
- // Compute a block sparse presentation of J'.
- scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
- SolverImpl::CreateJacobianBlockSparsityTranspose(program));
+ CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
+ << "Congratulations, you found a Ceres bug! Please report this error "
+ << "to the developers.";
- // Order rows using AMD.
- SuiteSparse ss;
- cholmod_sparse* block_jacobian_transpose =
- ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+ // Update the parameter_block_ordering object.
+ for (int i = 0; i < schur_ordering.size(); ++i) {
+ double* parameter_block = schur_ordering[i]->mutable_user_state();
+ const int group_id = (i < num_eliminate_blocks) ? 0 : 1;
+ parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
+ }
- vector<int> ordering(program->NumParameterBlocks(), -1);
- ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
- ss.Free(block_jacobian_transpose);
+ // We could call ApplyUserOrdering but this is cheaper and
+ // simpler.
+ swap(*program->mutable_parameter_blocks(), schur_ordering);
+ } else {
+ // The user provided an ordering with more than one elimination
+ // group. Trust the user and apply the ordering.
+ if (!ApplyUserOrdering(parameter_map,
+ parameter_block_ordering,
+ program,
+ error)) {
+ return false;
+ }
+ }
- // Apply ordering.
- vector<ParameterBlock*>& parameter_blocks =
- *(program->mutable_parameter_blocks());
- const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
- for (int i = 0; i < program->NumParameterBlocks(); ++i) {
- parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
+ // Pre-order the columns corresponding to the schur complement if
+ // possible.
+#if !defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CAMD)
+ if (linear_solver_type == SPARSE_SCHUR &&
+ sparse_linear_algebra_library_type == SUITE_SPARSE) {
+ vector<int> constraints;
+ vector<ParameterBlock*>& parameter_blocks =
+ *(program->mutable_parameter_blocks());
+
+ for (int i = 0; i < parameter_blocks.size(); ++i) {
+ constraints.push_back(
+ parameter_block_ordering->GroupId(
+ parameter_blocks[i]->mutable_user_state()));
+ }
+
+ // Set the offsets and index for CreateJacobianSparsityTranspose.
+ program->SetParameterOffsetsAndIndex();
+ // Compute a block sparse presentation of J'.
+ scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
+ SolverImpl::CreateJacobianBlockSparsityTranspose(program));
+
+ SuiteSparse ss;
+ cholmod_sparse* block_jacobian_transpose =
+ ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+
+ vector<int> ordering(parameter_blocks.size(), 0);
+ ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
+ &constraints[0],
+ &ordering[0]);
+ ss.Free(block_jacobian_transpose);
+
+ const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
+ for (int i = 0; i < program->NumParameterBlocks(); ++i) {
+ parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
+ }
}
#endif
program->SetParameterOffsetsAndIndex();
+ // Schur type solvers also require that their residual blocks be
+ // lexicographically ordered.
+ const int num_eliminate_blocks =
+ parameter_block_ordering->group_to_elements().begin()->second.size();
+ return LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
+ program,
+ error);
+}
+
+bool SolverImpl::ReorderProgramForSparseNormalCholesky(
+ const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
+ const ParameterBlockOrdering* parameter_block_ordering,
+ Program* program,
+ string* error) {
+ // Set the offsets and index for CreateJacobianSparsityTranspose.
+ program->SetParameterOffsetsAndIndex();
+ // Compute a block sparse presentation of J'.
+ scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
+ SolverImpl::CreateJacobianBlockSparsityTranspose(program));
+
+ vector<int> ordering(program->NumParameterBlocks(), 0);
+ vector<ParameterBlock*>& parameter_blocks =
+ *(program->mutable_parameter_blocks());
+
+ if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
+#ifdef CERES_NO_SUITESPARSE
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITE_SPARSE because "
+ "SuiteSparse was not enabled when Ceres was built.";
+ return false;
+#else
+ SuiteSparse ss;
+ cholmod_sparse* block_jacobian_transpose =
+ ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+
+# ifdef CERES_NO_CAMD
+ // No cholmod_camd, so ignore user's parameter_block_ordering and
+ // use plain old AMD.
+ ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
+# else
+ if (parameter_block_ordering->NumGroups() > 1) {
+ // If the user specified more than one elimination groups use them
+ // to constrain the ordering.
+ vector<int> constraints;
+ for (int i = 0; i < parameter_blocks.size(); ++i) {
+ constraints.push_back(
+ parameter_block_ordering->GroupId(
+ parameter_blocks[i]->mutable_user_state()));
+ }
+ ss.ConstrainedApproximateMinimumDegreeOrdering(
+ block_jacobian_transpose,
+ &constraints[0],
+ &ordering[0]);
+ } else {
+ ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose,
+ &ordering[0]);
+ }
+# endif // CERES_NO_CAMD
+
+ ss.Free(block_jacobian_transpose);
+#endif // CERES_NO_SUITESPARSE
+
+ } else if (sparse_linear_algebra_library_type == CX_SPARSE) {
+#ifndef CERES_NO_CXSPARSE
+
+ // CXSparse works with J'J instead of J'. So compute the block
+ // sparsity for J'J and compute an approximate minimum degree
+ // ordering.
+ CXSparse cxsparse;
+ cs_di* block_jacobian_transpose;
+ block_jacobian_transpose =
+ cxsparse.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
+ cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose);
+ cs_di* block_hessian =
+ cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian);
+ cxsparse.Free(block_jacobian);
+ cxsparse.Free(block_jacobian_transpose);
+
+ cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, &ordering[0]);
+ cxsparse.Free(block_hessian);
+#else // CERES_NO_CXSPARSE
+ *error = "Can't use SPARSE_NORMAL_CHOLESKY with CX_SPARSE because "
+ "CXSparse was not enabled when Ceres was built.";
+ return false;
+#endif // CERES_NO_CXSPARSE
+ } else {
+ *error = "Unknown sparse linear algebra library.";
+ return false;
+ }
+
+ // Apply ordering.
+ const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
+ for (int i = 0; i < program->NumParameterBlocks(); ++i) {
+ parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
+ }
+
+ program->SetParameterOffsetsAndIndex();
+ return true;
}
} // namespace internal