Basic harness for testing NIST problems.

Change-Id: I5baaa24dbf0506ceedf4a9be4ed17c84974d71a1
diff --git a/data/nist/MGH10.dat b/data/nist/MGH10.dat
new file mode 100644
index 0000000..df88ea4
--- /dev/null
+++ b/data/nist/MGH10.dat
@@ -0,0 +1,76 @@
+NIST/ITL StRD

+Dataset Name:  MGH10             (MGH10.dat)

+

+File Format:   ASCII

+               Starting Values   (lines 41 to 43)

+               Certified Values  (lines 41 to 48)

+               Data              (lines 61 to 76)

+

+Procedure:     Nonlinear Least Squares Regression

+

+Description:   This problem was found to be difficult for some very

+               good algorithms.

+

+               See More, J. J., Garbow, B. S., and Hillstrom, K. E. 

+               (1981).  Testing unconstrained optimization software.

+               ACM Transactions on Mathematical Software. 7(1): 

+               pp. 17-41.

+

+Reference:     Meyer, R. R. (1970).  

+               Theoretical and computational aspects of nonlinear 

+               regression.  In Nonlinear Programming, Rosen, 

+               Mangasarian and Ritter (Eds).  

+               New York, NY: Academic Press, pp. 465-486.

+

+Data:          1 Response  (y)

+               1 Predictor (x)

+               16 Observations

+               Higher Level of Difficulty

+               Generated Data

+ 

+Model:         Exponential Class

+               3 Parameters (b1 to b3)

+ 

+               y = b1 * exp[b2/(x+b3)]  +  e

+

+

+

+          Starting values                  Certified Values

+

+        Start 1     Start 2           Parameter     Standard Deviation

+  b1 =        2         0.02       5.6096364710E-03  1.5687892471E-04

+  b2 =   400000      4000          6.1813463463E+03  2.3309021107E+01

+  b3 =    25000       250          3.4522363462E+02  7.8486103508E-01

+

+Residual Sum of Squares:                    8.7945855171E+01

+Residual Standard Deviation:                2.6009740065E+00

+Degrees of Freedom:                                13

+Number of Observations:                            16

+

+

+

+

+

+

+

+

+

+

+

+Data:  y               x

+      3.478000E+04    5.000000E+01

+      2.861000E+04    5.500000E+01

+      2.365000E+04    6.000000E+01

+      1.963000E+04    6.500000E+01

+      1.637000E+04    7.000000E+01

+      1.372000E+04    7.500000E+01

+      1.154000E+04    8.000000E+01

+      9.744000E+03    8.500000E+01

+      8.261000E+03    9.000000E+01

+      7.030000E+03    9.500000E+01

+      6.005000E+03    1.000000E+02

+      5.147000E+03    1.050000E+02

+      4.427000E+03    1.100000E+02

+      3.820000E+03    1.150000E+02

+      3.307000E+03    1.200000E+02

+      2.872000E+03    1.250000E+02