Lint cleanup from William Rucklidge.

Change-Id: I745810f5496a1b93263b20ff140f8883da61995e
diff --git a/internal/ceres/covariance_impl.cc b/internal/ceres/covariance_impl.cc
index 91f0393..faa0ce5 100644
--- a/internal/ceres/covariance_impl.cc
+++ b/internal/ceres/covariance_impl.cc
@@ -470,7 +470,7 @@
     LOG(ERROR) << "Cholesky factorization of J'J is not reliable. "
                << "Reciprocal condition number: "
                << reciprocal_condition_number << " "
-               << "min_reciprocal_condition_number : "
+               << "min_reciprocal_condition_number: "
                << options_.min_reciprocal_condition_number;
     ss.Free(factor);
     return false;
@@ -822,7 +822,7 @@
         LOG(ERROR) << "Cholesky factorization of J'J is not reliable. "
                    << "Reciprocal condition number: "
                    << singular_value_ratio * singular_value_ratio << " "
-                   << "min_reciprocal_condition_number : "
+                   << "min_reciprocal_condition_number: "
                    << options_.min_reciprocal_condition_number;
         return false;
       }
diff --git a/internal/ceres/lapack.cc b/internal/ceres/lapack.cc
index c4f9302..90973fa 100644
--- a/internal/ceres/lapack.cc
+++ b/internal/ceres/lapack.cc
@@ -138,7 +138,7 @@
     LOG(FATAL) << "Congratulations, you found a bug in Ceres."
                << "Please report it."
                << "LAPACK::dgels fatal error."
-               << "Argument: " << info << " is invalid.";
+               << "Argument: " << -info << " is invalid.";
   }
   return static_cast<int>(work);
 #endif
diff --git a/internal/ceres/solver_impl_test.cc b/internal/ceres/solver_impl_test.cc
index 30eeea2..f0f36ad 100644
--- a/internal/ceres/solver_impl_test.cc
+++ b/internal/ceres/solver_impl_test.cc
@@ -99,11 +99,12 @@
     inner_iteration_ordering.AddElementToGroup(&z, 0);
 
     Program program(*problem.mutable_program());
-    EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
-                                                         &linear_solver_ordering,
-                                                         &inner_iteration_ordering,
-                                                         NULL,
-                                                         &error));
+    EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(
+                    &program,
+                    &linear_solver_ordering,
+                    &inner_iteration_ordering,
+                    NULL,
+                    &error));
     EXPECT_EQ(program.NumParameterBlocks(), 3);
     EXPECT_EQ(program.NumResidualBlocks(), 3);
     EXPECT_EQ(linear_solver_ordering.NumElements(), 3);
@@ -127,11 +128,12 @@
 
   Program program(problem.program());
   string error;
-  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
-                                                       &linear_solver_ordering,
-                                                       &inner_iteration_ordering,
-                                                       NULL,
-                                                       &error));
+  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(
+                  &program,
+                  &linear_solver_ordering,
+                  &inner_iteration_ordering,
+                  NULL,
+                  &error));
   EXPECT_EQ(program.NumParameterBlocks(), 0);
   EXPECT_EQ(program.NumResidualBlocks(), 0);
   EXPECT_EQ(linear_solver_ordering.NumElements(), 0);
@@ -160,11 +162,12 @@
 
   Program program(problem.program());
   string error;
-  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
-                                                       &linear_solver_ordering,
-                                                       &inner_iteration_ordering,
-                                                       NULL,
-                                                       &error));
+  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(
+                  &program,
+                  &linear_solver_ordering,
+                  &inner_iteration_ordering,
+                  NULL,
+                  &error));
   EXPECT_EQ(program.NumParameterBlocks(), 0);
   EXPECT_EQ(program.NumResidualBlocks(), 0);
   EXPECT_EQ(linear_solver_ordering.NumElements(), 0);
@@ -198,11 +201,12 @@
 
   Program program(problem.program());
   string error;
-  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
-                                                       &linear_solver_ordering,
-                                                       &inner_iteration_ordering,
-                                                       NULL,
-                                                       &error));
+  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(
+                  &program,
+                  &linear_solver_ordering,
+                  &inner_iteration_ordering,
+                  NULL,
+                  &error));
   EXPECT_EQ(program.NumParameterBlocks(), 1);
   EXPECT_EQ(program.NumResidualBlocks(), 1);
   EXPECT_EQ(linear_solver_ordering.NumElements(), 1);
@@ -235,11 +239,12 @@
 
   Program program(problem.program());
   string error;
-  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
-                                                       &linear_solver_ordering,
-                                                       &inner_iteration_ordering,
-                                                       NULL,
-                                                       &error));
+  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(
+                  &program,
+                  &linear_solver_ordering,
+                  &inner_iteration_ordering,
+                  NULL,
+                  &error));
   EXPECT_EQ(program.NumParameterBlocks(), 2);
   EXPECT_EQ(program.NumResidualBlocks(), 2);
   EXPECT_EQ(linear_solver_ordering.NumElements(), 2);
@@ -283,11 +288,12 @@
                                    scratch.get());
 
   string error;
-  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
-                                                       &linear_solver_ordering,
-                                                       NULL,
-                                                       &fixed_cost,
-                                                       &error));
+  EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(
+                  &program,
+                  &linear_solver_ordering,
+                  NULL,
+                  &fixed_cost,
+                  &error));
   EXPECT_EQ(program.NumParameterBlocks(), 2);
   EXPECT_EQ(program.NumResidualBlocks(), 2);
   EXPECT_EQ(linear_solver_ordering.NumElements(), 2);
diff --git a/internal/ceres/suitesparse.cc b/internal/ceres/suitesparse.cc
index 06cc0a8..8a52631 100644
--- a/internal/ceres/suitesparse.cc
+++ b/internal/ceres/suitesparse.cc
@@ -122,7 +122,7 @@
 }
 
 cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,
-                                             string* status) {
+                                             string* message) {
   // Cholmod can try multiple re-ordering strategies to find a fill
   // reducing ordering. Here we just tell it use AMD with automatic
   // matrix dependence choice of supernodal versus simplicial
@@ -137,7 +137,7 @@
   }
 
   if (cc_.status != CHOLMOD_OK) {
-    *status = StringPrintf("cholmod_analyze failed. error code: %d",
+    *message = StringPrintf("cholmod_analyze failed. error code: %d",
                            cc_.status);
     return NULL;
   }
@@ -149,18 +149,18 @@
     cholmod_sparse* A,
     const vector<int>& row_blocks,
     const vector<int>& col_blocks,
-    string* status) {
+    string* message) {
   vector<int> ordering;
   if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {
     return NULL;
   }
-  return AnalyzeCholeskyWithUserOrdering(A, ordering, status);
+  return AnalyzeCholeskyWithUserOrdering(A, ordering, message);
 }
 
 cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(
     cholmod_sparse* A,
     const vector<int>& ordering,
-    string* status) {
+    string* message) {
   CHECK_EQ(ordering.size(), A->nrow);
 
   cc_.nmethods = 1;
@@ -172,7 +172,7 @@
     cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
   }
   if (cc_.status != CHOLMOD_OK) {
-    *status = StringPrintf("cholmod_analyze failed. error code: %d",
+    *message = StringPrintf("cholmod_analyze failed. error code: %d",
                            cc_.status);
     return NULL;
   }
@@ -182,7 +182,7 @@
 
 cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(
     cholmod_sparse* A,
-    string* status) {
+    string* message) {
   cc_.nmethods = 1;
   cc_.method[0].ordering = CHOLMOD_NATURAL;
   cc_.postorder = 0;
@@ -192,7 +192,7 @@
     cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
   }
   if (cc_.status != CHOLMOD_OK) {
-    *status = StringPrintf("cholmod_analyze failed. error code: %d",
+    *message = StringPrintf("cholmod_analyze failed. error code: %d",
                            cc_.status);
     return NULL;
   }
@@ -244,7 +244,7 @@
 
 LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,
                                                   cholmod_factor* L,
-                                                  string* status) {
+                                                  string* message) {
   CHECK_NOTNULL(A);
   CHECK_NOTNULL(L);
 
@@ -268,35 +268,35 @@
   // (e.g. out of memory).
   switch (cc_.status) {
     case CHOLMOD_NOT_INSTALLED:
-      *status = "CHOLMOD failure: Method not installed.";
+      *message = "CHOLMOD failure: Method not installed.";
       return LINEAR_SOLVER_FATAL_ERROR;
     case CHOLMOD_OUT_OF_MEMORY:
-      *status = "CHOLMOD failure: Out of memory.";
+      *message = "CHOLMOD failure: Out of memory.";
       return LINEAR_SOLVER_FATAL_ERROR;
     case CHOLMOD_TOO_LARGE:
-      *status = "CHOLMOD failure: Integer overflow occured.";
+      *message = "CHOLMOD failure: Integer overflow occured.";
       return LINEAR_SOLVER_FATAL_ERROR;
     case CHOLMOD_INVALID:
-      *status = "CHOLMOD failure: Invalid input.";
+      *message = "CHOLMOD failure: Invalid input.";
       return LINEAR_SOLVER_FATAL_ERROR;
     case CHOLMOD_NOT_POSDEF:
-      *status = "CHOLMOD warning: Matrix not positive definite.";
+      *message = "CHOLMOD warning: Matrix not positive definite.";
       return LINEAR_SOLVER_FAILURE;
     case CHOLMOD_DSMALL:
-      *status = "CHOLMOD warning: D for LDL' or diag(L) or "
+      *message = "CHOLMOD warning: D for LDL' or diag(L) or "
                 "LL' has tiny absolute value.";
       return LINEAR_SOLVER_FAILURE;
     case CHOLMOD_OK:
-      if (cholmod_status != 0) {
+      if (cholmod_message != 0) {
         return LINEAR_SOLVER_SUCCESS;
       }
 
-      *status = "CHOLMOD failure: cholmod_factorize returned false "
+      *message = "CHOLMOD failure: cholmod_factorize returned false "
                 "but cholmod_common::status is CHOLMOD_OK."
                 "Please report this to ceres-solver@googlegroups.com.";
       return LINEAR_SOLVER_FATAL_ERROR;
     default:
-      *status =
+      *message =
           StringPrintf("Unknown cholmod return code: %d. "
                        "Please report this to ceres-solver@googlegroups.com.",
                        cc_.status);
@@ -308,9 +308,9 @@
 
 cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,
                                   cholmod_dense* b,
-                                  string* status) {
+                                  string* message) {
   if (cc_.status != CHOLMOD_OK) {
-    *status = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
+    *message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
     return NULL;
   }
 
diff --git a/internal/ceres/suitesparse.h b/internal/ceres/suitesparse.h
index 0604654..85cceb1 100644
--- a/internal/ceres/suitesparse.h
+++ b/internal/ceres/suitesparse.h
@@ -1,4 +1,4 @@
-// Ceres Solver - A fast non-linear least squares minimizer
+s// Ceres Solver - A fast non-linear least squares minimizer
 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 // http://code.google.com/p/ceres-solver/
 //
@@ -139,15 +139,15 @@
   // A is not modified, only the pattern of non-zeros of A is used,
   // the actual numerical values in A are of no consequence.
   //
-  // status contains an explanation of the failures if any.
+  // message contains an explanation of the failures if any.
   //
   // Caller owns the result.
-  cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, string* status);
+  cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, string* message);
 
   cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
                                        const vector<int>& row_blocks,
                                        const vector<int>& col_blocks,
-                                       string* status);
+                                       string* message);
 
   // If A is symmetric, then compute the symbolic Cholesky
   // factorization of A(ordering, ordering). If A is unsymmetric, then
@@ -157,38 +157,38 @@
   // A is not modified, only the pattern of non-zeros of A is used,
   // the actual numerical values in A are of no consequence.
   //
-  // status contains an explanation of the failures if any.
+  // message contains an explanation of the failures if any.
   //
   // Caller owns the result.
   cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A,
                                                   const vector<int>& ordering,
-                                                  string* status);
+                                                  string* message);
 
   // Perform a symbolic factorization of A without re-ordering A. No
   // postordering of the elimination tree is performed. This ensures
   // that the symbolic factor does not introduce an extra permutation
   // on the matrix. See the documentation for CHOLMOD for more details.
   //
-  // status contains an explanation of the failures if any.
+  // message contains an explanation of the failures if any.
   cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A,
-                                                     string* status);
+                                                     string* message);
 
   // Use the symbolic factorization in L, to find the numerical
   // factorization for the matrix A or AA^T. Return true if
   // successful, false otherwise. L contains the numeric factorization
   // on return.
   //
-  // status contains an explanation of the failures if any.
+  // message contains an explanation of the failures if any.
   LinearSolverTerminationType Cholesky(cholmod_sparse* A,
                                        cholmod_factor* L,
-                                       string* status);
+                                       string* message);
 
   // Given a Cholesky factorization of a matrix A = LL^T, solve the
   // linear system Ax = b, and return the result. If the Solve fails
   // NULL is returned. Caller owns the result.
   //
-  // status contains an explanation of the failures if any.
-  cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, string* solve);
+  // message contains an explanation of the failures if any.
+  cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, string* message);
 
   // By virtue of the modeling layer in Ceres being block oriented,
   // all the matrices used by Ceres are also block oriented. When