A number of changes to BlockSparseMatrix.
1. Add BlockSparseMatrix::CreateDiagonalMatrix
2. Add BlockSparseMatrix::AppendRows
3. Add BlockSparseMatrix::DeleteRowBlocks
4. Add BlockSparseMatrix::CreateRandomMatrix
5. Add a non-default constructor to Compressedlist.
Change-Id: I7cc7656616d059cef4471335f6d5b636807953e6
diff --git a/internal/ceres/block_sparse_matrix.cc b/internal/ceres/block_sparse_matrix.cc
index 68d0780..9195e9e 100644
--- a/internal/ceres/block_sparse_matrix.cc
+++ b/internal/ceres/block_sparse_matrix.cc
@@ -35,6 +35,7 @@
#include <vector>
#include "ceres/block_structure.h"
#include "ceres/internal/eigen.h"
+#include "ceres/random.h"
#include "ceres/small_blas.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
@@ -242,5 +243,152 @@
}
}
+BlockSparseMatrix* BlockSparseMatrix::CreateDiagonalMatrix(
+ const double* diagonal, const std::vector<Block>& column_blocks) {
+ // Create the block structure for the diagonal matrix.
+ CompressedRowBlockStructure* bs = new CompressedRowBlockStructure();
+ bs->cols = column_blocks;
+ int position = 0;
+ bs->rows.resize(column_blocks.size(), CompressedRow(1));
+ for (int i = 0; i < column_blocks.size(); ++i) {
+ CompressedRow& row = bs->rows[i];
+ row.block = column_blocks[i];
+ Cell& cell = row.cells[0];
+ cell.block_id = i;
+ cell.position = position;
+ position += row.block.size * row.block.size;
+ }
+
+ // Create the BlockSparseMatrix with the given block structure.
+ BlockSparseMatrix* matrix = new BlockSparseMatrix(bs);
+ matrix->SetZero();
+
+ // Fill the values array of the block sparse matrix.
+ double* values = matrix->mutable_values();
+ for (int i = 0; i < column_blocks.size(); ++i) {
+ const int size = column_blocks[i].size;
+ for (int j = 0; j < size; ++j) {
+ // (j + 1) * size is compact way of accessing the (j,j) entry.
+ values[j * (size + 1)] = diagonal[j];
+ }
+ diagonal += size;
+ values += size * size;
+ }
+
+ return matrix;
+}
+
+void BlockSparseMatrix::AppendRows(const BlockSparseMatrix& m) {
+ const int old_num_nonzeros = num_nonzeros_;
+ const int old_num_row_blocks = block_structure_->rows.size();
+ const CompressedRowBlockStructure* m_bs = m.block_structure();
+ block_structure_->rows.resize(old_num_row_blocks + m_bs->rows.size());
+
+ for (int i = 0; i < m_bs->rows.size(); ++i) {
+ const CompressedRow& m_row = m_bs->rows[i];
+ CompressedRow& row = block_structure_->rows[old_num_row_blocks + i];
+ row.block.size = m_row.block.size;
+ row.block.position = num_rows_;
+ num_rows_ += m_row.block.size;
+ row.cells.resize(m_row.cells.size());
+ for (int c = 0; c < m_row.cells.size(); ++c) {
+ const int block_id = m_row.cells[c].block_id;
+ row.cells[c].block_id = block_id;
+ row.cells[c].position = num_nonzeros_;
+ num_nonzeros_ += m_row.block.size * m_bs->cols[block_id].size;
+ }
+ }
+
+ double* new_values = new double[num_nonzeros_];
+ std::copy(values_.get(), values_.get() + old_num_nonzeros, new_values);
+ values_.reset(new_values);
+
+ std::copy(m.values(),
+ m.values() + m.num_nonzeros(),
+ values_.get() + old_num_nonzeros);
+}
+
+void BlockSparseMatrix::DeleteRowBlocks(const int delta_row_blocks) {
+ const int num_row_blocks = block_structure_->rows.size();
+ int delta_num_nonzeros = 0;
+ int delta_num_rows = 0;
+ const std::vector<Block>& column_blocks = block_structure_->cols;
+ for (int i = 0; i < delta_row_blocks; ++i) {
+ const CompressedRow& row = block_structure_->rows[num_row_blocks - i - 1];
+ delta_num_rows += row.block.size;
+ for (int c = 0; c < row.cells.size(); ++c) {
+ const Cell& cell = row.cells[c];
+ delta_num_nonzeros += row.block.size * column_blocks[cell.block_id].size;
+ }
+ }
+ num_nonzeros_ -= delta_num_nonzeros;
+ num_rows_ -= delta_num_rows;
+ block_structure_->rows.resize(num_row_blocks - delta_row_blocks);
+}
+
+BlockSparseMatrix* BlockSparseMatrix::CreateRandomMatrix(
+ const BlockSparseMatrix::RandomMatrixOptions& options) {
+ CHECK_GT(options.num_row_blocks, 0);
+ CHECK_GT(options.min_row_block_size, 0);
+ CHECK_GT(options.max_row_block_size, 0);
+ CHECK_LE(options.min_row_block_size, options.max_row_block_size);
+ CHECK_GT(options.num_col_blocks, 0);
+ CHECK_GT(options.min_col_block_size, 0);
+ CHECK_GT(options.max_col_block_size, 0);
+ CHECK_LE(options.min_col_block_size, options.max_col_block_size);
+ CHECK_GT(options.block_density, 0.0);
+ CHECK_LE(options.block_density, 1.0);
+
+ CompressedRowBlockStructure* bs = new CompressedRowBlockStructure();
+ // Generate the col block structure.
+ int col_block_position = 0;
+ for (int i = 0; i < options.num_col_blocks; ++i) {
+ // Generate a random integer in [min_col_block_size, max_col_block_size]
+ const int delta_block_size =
+ Uniform(options.max_col_block_size - options.min_col_block_size);
+ const int col_block_size = options.min_col_block_size + delta_block_size;
+ bs->cols.push_back(Block(col_block_size, col_block_position));
+ col_block_position += col_block_size;
+ }
+
+
+ bool matrix_has_blocks = false;
+ while (!matrix_has_blocks) {
+ LOG(INFO) << "clearing";
+ bs->rows.clear();
+ int row_block_position = 0;
+ int value_position = 0;
+ for (int r = 0; r < options.num_row_blocks; ++r) {
+
+ const int delta_block_size =
+ Uniform(options.max_row_block_size - options.min_row_block_size);
+ const int row_block_size = options.min_row_block_size + delta_block_size;
+ bs->rows.push_back(CompressedRow());
+ CompressedRow& row = bs->rows.back();
+ row.block.size = row_block_size;
+ row.block.position = row_block_position;
+ row_block_position += row_block_size;
+ for (int c = 0; c < options.num_col_blocks; ++c) {
+ if (RandDouble() > options.block_density) continue;
+
+ row.cells.push_back(Cell());
+ Cell& cell = row.cells.back();
+ cell.block_id = c;
+ cell.position = value_position;
+ value_position += row_block_size * bs->cols[c].size;
+ matrix_has_blocks = true;
+ }
+ }
+ }
+
+ BlockSparseMatrix* matrix = new BlockSparseMatrix(bs);
+ double* values = matrix->mutable_values();
+ for (int i = 0; i < matrix->num_nonzeros(); ++i) {
+ values[i] = RandNormal();
+ }
+
+ return matrix;
+}
+
} // namespace internal
} // namespace ceres
diff --git a/internal/ceres/block_sparse_matrix.h b/internal/ceres/block_sparse_matrix.h
index 2f9afb7..1b91a75 100644
--- a/internal/ceres/block_sparse_matrix.h
+++ b/internal/ceres/block_sparse_matrix.h
@@ -84,10 +84,52 @@
void ToTripletSparseMatrix(TripletSparseMatrix* matrix) const;
const CompressedRowBlockStructure* block_structure() const;
+ // Append the contents of m to the bottom of this matrix. m must
+ // have the same column blocks structure as this matrix.
+ void AppendRows(const BlockSparseMatrix& m);
+
+ // Delete the bottom delta_rows_blocks.
+ void DeleteRowBlocks(int delta_row_blocks);
+
+ static BlockSparseMatrix* CreateDiagonalMatrix(
+ const double* diagonal,
+ const std::vector<Block>& column_blocks);
+
+ struct RandomMatrixOptions {
+ RandomMatrixOptions()
+ : num_row_blocks(0),
+ min_row_block_size(0),
+ max_row_block_size(0),
+ num_col_blocks(0),
+ min_col_block_size(0),
+ max_col_block_size(0),
+ block_density(0.0) {
+ }
+
+ int num_row_blocks;
+ int min_row_block_size;
+ int max_row_block_size;
+ int num_col_blocks;
+ int min_col_block_size;
+ int max_col_block_size;
+
+ // 0 < block_density <= 1 is the probability of a block being
+ // present in the matrix. A given random matrix will not have
+ // precisely this density.
+ double block_density;
+ };
+
+ // Create a random BlockSparseMatrix whose entries are normally
+ // distributed and whose structure is determined by
+ // RandomMatrixOptions.
+ //
+ // Caller owns the result.
+ static BlockSparseMatrix* CreateRandomMatrix(
+ const RandomMatrixOptions& options);
+
private:
int num_rows_;
int num_cols_;
- int max_num_nonzeros_;
int num_nonzeros_;
scoped_array<double> values_;
scoped_ptr<CompressedRowBlockStructure> block_structure_;
diff --git a/internal/ceres/block_sparse_matrix_test.cc b/internal/ceres/block_sparse_matrix_test.cc
index 226938f..b3d21d0 100644
--- a/internal/ceres/block_sparse_matrix_test.cc
+++ b/internal/ceres/block_sparse_matrix_test.cc
@@ -108,5 +108,111 @@
EXPECT_LT((m_a - m_b).norm(), 1e-12);
}
+TEST_F(BlockSparseMatrixTest, AppendRows) {
+ scoped_ptr<LinearLeastSquaresProblem> problem(
+ CreateLinearLeastSquaresProblemFromId(2));
+ scoped_ptr<BlockSparseMatrix> m(
+ down_cast<BlockSparseMatrix*>(problem->A.release()));
+ A_->AppendRows(*m);
+ EXPECT_EQ(A_->num_rows(), 2 * m->num_rows());
+ EXPECT_EQ(A_->num_cols(), m->num_cols());
+
+ problem.reset(CreateLinearLeastSquaresProblemFromId(1));
+ scoped_ptr<TripletSparseMatrix> m2(
+ down_cast<TripletSparseMatrix*>(problem->A.release()));
+ B_->AppendRows(*m2);
+
+ Vector y_a = Vector::Zero(A_->num_rows());
+ Vector y_b = Vector::Zero(A_->num_rows());
+ for (int i = 0; i < A_->num_cols(); ++i) {
+ Vector x = Vector::Zero(A_->num_cols());
+ x[i] = 1.0;
+ y_a.setZero();
+ y_b.setZero();
+
+ A_->RightMultiply(x.data(), y_a.data());
+ B_->RightMultiply(x.data(), y_b.data());
+ EXPECT_LT((y_a - y_b).norm(), 1e-12);
+ }
+}
+
+TEST_F(BlockSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {
+ const std::vector<Block>& column_blocks = A_->block_structure()->cols;
+ const int num_cols =
+ column_blocks.back().size + column_blocks.back().position;
+ Vector diagonal(num_cols);
+ for (int i = 0; i < num_cols; ++i) {
+ diagonal(i) = 2 * i * i + 1;
+ }
+ scoped_ptr<BlockSparseMatrix> appendage(
+ BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks));
+
+ A_->AppendRows(*appendage);
+ Vector y_a, y_b;
+ y_a.resize(A_->num_rows());
+ y_b.resize(A_->num_rows());
+ for (int i = 0; i < A_->num_cols(); ++i) {
+ Vector x = Vector::Zero(A_->num_cols());
+ x[i] = 1.0;
+ y_a.setZero();
+ y_b.setZero();
+
+ A_->RightMultiply(x.data(), y_a.data());
+ B_->RightMultiply(x.data(), y_b.data());
+ EXPECT_LT((y_a.head(B_->num_rows()) - y_b.head(B_->num_rows())).norm(), 1e-12);
+ Vector expected_tail = Vector::Zero(A_->num_cols());
+ expected_tail(i) = diagonal(i);
+ EXPECT_LT((y_a.tail(A_->num_cols()) - expected_tail).norm(), 1e-12);
+ }
+
+
+ A_->DeleteRowBlocks(column_blocks.size());
+ EXPECT_EQ(A_->num_rows(), B_->num_rows());
+ EXPECT_EQ(A_->num_cols(), B_->num_cols());
+
+ y_a.resize(A_->num_rows());
+ y_b.resize(A_->num_rows());
+ for (int i = 0; i < A_->num_cols(); ++i) {
+ Vector x = Vector::Zero(A_->num_cols());
+ x[i] = 1.0;
+ y_a.setZero();
+ y_b.setZero();
+
+ A_->RightMultiply(x.data(), y_a.data());
+ B_->RightMultiply(x.data(), y_b.data());
+ EXPECT_LT((y_a - y_b).norm(), 1e-12);
+ }
+}
+
+TEST(BlockSparseMatrix, CreateDiagonalMatrix) {
+ std::vector<Block> column_blocks;
+ column_blocks.push_back(Block(2, 0));
+ column_blocks.push_back(Block(1, 2));
+ column_blocks.push_back(Block(3, 3));
+ const int num_cols =
+ column_blocks.back().size + column_blocks.back().position;
+ Vector diagonal(num_cols);
+ for (int i = 0; i < num_cols; ++i) {
+ diagonal(i) = 2 * i * i + 1;
+ }
+
+ scoped_ptr<BlockSparseMatrix> m(
+ BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks));
+ const CompressedRowBlockStructure* bs = m->block_structure();
+ EXPECT_EQ(bs->cols.size(), column_blocks.size());
+ for (int i = 0; i < column_blocks.size(); ++i) {
+ EXPECT_EQ(bs->cols[i].size, column_blocks[i].size);
+ EXPECT_EQ(bs->cols[i].position, column_blocks[i].position);
+ }
+ EXPECT_EQ(m->num_rows(), m->num_cols());
+ Vector x = Vector::Ones(num_cols);
+ Vector y = Vector::Zero(num_cols);
+ m->RightMultiply(x.data(), y.data());
+ for (int i = 0; i < num_cols; ++i) {
+ EXPECT_NEAR(y[i], diagonal[i], std::numeric_limits<double>::epsilon());
+ }
+}
+
+
} // namespace internal
} // namespace ceres
diff --git a/internal/ceres/block_structure.h b/internal/ceres/block_structure.h
index 6e7003a..9d1b5e9 100644
--- a/internal/ceres/block_structure.h
+++ b/internal/ceres/block_structure.h
@@ -70,6 +70,11 @@
bool CellLessThan(const Cell& lhs, const Cell& rhs);
struct CompressedList {
+ CompressedList() {}
+
+ // Construct a CompressedList with the cells containing num_cells
+ // entries.
+ CompressedList(int num_cells) : cells(num_cells) {}
Block block;
std::vector<Cell> cells;
};