Documentation update Change-Id: I0fec43bff4fe0ea6cd2d2a8b34dac2330a517da0
diff --git a/docs/source/modeling.rst b/docs/source/modeling.rst index c816676..34c3bf8 100644 --- a/docs/source/modeling.rst +++ b/docs/source/modeling.rst
@@ -1,9 +1,7 @@ .. default-domain:: cpp - .. cpp:namespace:: ceres - .. _`chapter-modeling`: ============ @@ -30,6 +28,15 @@ that is used to reduce the influence of outliers on the solution of non-linear least squares problems. +In this chapter we will describe the various classes that are part of +Ceres Solver's modeling API, and how they can be used to construct +optimization. + +Once a problem has been constructed, various methods for solving them +will be discussed in :ref:`chapter-solving`. It is by design that the +modeling and the solving APIs are orthogonal to each other. This +enables easy switching/tweaking of various solver parameters without +having to touch the problem once it has been successfuly modeling. :class:`CostFunction` ---------------------
diff --git a/docs/source/tutorial.rst b/docs/source/tutorial.rst index c85e98a..eac50b4 100644 --- a/docs/source/tutorial.rst +++ b/docs/source/tutorial.rst
@@ -27,7 +27,8 @@ a scalar function that is used to reduce the influence of outliers on the solution of non-linear least squares problems. As a special case, when :math:`\rho_i(x) = x`, i.e., the identity function, we get the -more familiar `non-linear least squares problem` <http: +more familiar `non-linear least squares problem +<http://en.wikipedia.org/wiki/Non-linear_least_squares>`_. .. math:: \frac{1}{2}\sum_{i=1} \left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2. :label: ceresproblem2
diff --git a/docs/source/version_history.rst b/docs/source/version_history.rst index 6cfb80c..010b477 100644 --- a/docs/source/version_history.rst +++ b/docs/source/version_history.rst
@@ -15,6 +15,8 @@ gradient descent, non-linear conjugate gradient and LBFGS search directions. +#. New, much improved HTML documentation using Sphinx. + #. Speedup the robust loss function correction logic when residual is one dimensional. @@ -23,8 +25,19 @@ #. Added support for mixing automatic, analytic and numeric differentiation. This is done by adding ``CostFunctionToFunctor`` - and ``NumericDiffFunctor`` objects. + and ``NumericDiffFunctor`` objects to the API. +#. ``Summary::FullReport`` now reports the structure of the ordering + used by the ``LinearSolver`` and inner iterations. + +#. Ceres when run at the ``VLOG`` level 3 or higher will report + detailed timing information about its internals. + +#. Remove extraneous initial and final residual evaluations. This + speeds up the solver a bit. + +#. Automatic differenatiation with a dynamic number of parameter + blocks. (Based on an initial implementation by Thad Hughes). Bug Fixes --------- @@ -37,6 +50,13 @@ #. Fixed an initialization bug in ``ProgramEvaluator``. +#. Fixes to Android.mk paths (Carlos Hernandez) + +#. Modify ``nist.cc`` to compute accuracy based on ground truth + solution rather than the ground truth function value. + +#. Fixed a memory leak in ``cxsparse.cc``. (Alexander Mordvintsev). + 1.4.0 =====
diff --git a/include/ceres/dynamic_autodiff_cost_function.h b/include/ceres/dynamic_autodiff_cost_function.h index 4226177..f2e7c26 100644 --- a/include/ceres/dynamic_autodiff_cost_function.h +++ b/include/ceres/dynamic_autodiff_cost_function.h
@@ -41,7 +41,7 @@ // // struct MyCostFunctor { // template<typename T> -// bool operator()(const* const* T parameters, T* residuals) const { +// bool operator()(T const* const* parameters, T* residuals) const { // // Use parameters[i] to access the i'th parameter block. // } // }