Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/linear_least_squares_problems.h" |
| 32 | |
| 33 | #include <string> |
| 34 | #include <vector> |
| 35 | #include <glog/logging.h> |
| 36 | #include "ceres/block_sparse_matrix.h" |
| 37 | #include "ceres/block_structure.h" |
| 38 | #include "ceres/compressed_row_sparse_matrix.h" |
| 39 | #include "ceres/file.h" |
| 40 | #include "ceres/matrix_proto.h" |
| 41 | #include "ceres/triplet_sparse_matrix.h" |
| 42 | #include "ceres/internal/scoped_ptr.h" |
| 43 | #include "ceres/types.h" |
| 44 | |
| 45 | namespace ceres { |
| 46 | namespace internal { |
| 47 | |
| 48 | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromId(int id) { |
| 49 | switch (id) { |
| 50 | case 0: |
| 51 | return LinearLeastSquaresProblem0(); |
| 52 | case 1: |
| 53 | return LinearLeastSquaresProblem1(); |
| 54 | case 2: |
| 55 | return LinearLeastSquaresProblem2(); |
| 56 | case 3: |
| 57 | return LinearLeastSquaresProblem3(); |
| 58 | default: |
| 59 | LOG(FATAL) << "Unknown problem id requested " << id; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | #ifndef CERES_DONT_HAVE_PROTOCOL_BUFFERS |
| 64 | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromFile( |
| 65 | const string& filename) { |
| 66 | LinearLeastSquaresProblemProto problem_proto; |
| 67 | { |
| 68 | string serialized_proto; |
| 69 | ReadFileToStringOrDie(filename, &serialized_proto); |
| 70 | CHECK(problem_proto.ParseFromString(serialized_proto)); |
| 71 | } |
| 72 | |
| 73 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 74 | const SparseMatrixProto& A = problem_proto.a(); |
| 75 | |
| 76 | if (A.has_block_matrix()) { |
| 77 | problem->A.reset(new BlockSparseMatrix(A)); |
| 78 | } else if (A.has_triplet_matrix()) { |
| 79 | problem->A.reset(new TripletSparseMatrix(A)); |
| 80 | } else { |
| 81 | problem->A.reset(new CompressedRowSparseMatrix(A)); |
| 82 | } |
| 83 | |
| 84 | if (problem_proto.b_size() > 0) { |
| 85 | problem->b.reset(new double[problem_proto.b_size()]); |
| 86 | for (int i = 0; i < problem_proto.b_size(); ++i) { |
| 87 | problem->b[i] = problem_proto.b(i); |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | if (problem_proto.d_size() > 0) { |
| 92 | problem->D.reset(new double[problem_proto.d_size()]); |
| 93 | for (int i = 0; i < problem_proto.d_size(); ++i) { |
| 94 | problem->D[i] = problem_proto.d(i); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | if (problem_proto.d_size() > 0) { |
| 99 | if (problem_proto.x_size() > 0) { |
| 100 | problem->x_D.reset(new double[problem_proto.x_size()]); |
| 101 | for (int i = 0; i < problem_proto.x_size(); ++i) { |
| 102 | problem->x_D[i] = problem_proto.x(i); |
| 103 | } |
| 104 | } |
| 105 | } else { |
| 106 | if (problem_proto.x_size() > 0) { |
| 107 | problem->x.reset(new double[problem_proto.x_size()]); |
| 108 | for (int i = 0; i < problem_proto.x_size(); ++i) { |
| 109 | problem->x[i] = problem_proto.x(i); |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | problem->num_eliminate_blocks = 0; |
| 115 | if (problem_proto.has_num_eliminate_blocks()) { |
| 116 | problem->num_eliminate_blocks = problem_proto.num_eliminate_blocks(); |
| 117 | } |
| 118 | |
| 119 | return problem; |
| 120 | } |
| 121 | #else |
| 122 | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromFile( |
| 123 | const string& filename) { |
| 124 | LOG(FATAL) |
| 125 | << "Loading a least squares problem from disk requires " |
| 126 | << "Ceres to be built with Protocol Buffers support."; |
| 127 | return NULL; |
| 128 | } |
| 129 | #endif // CERES_DONT_HAVE_PROTOCOL_BUFFERS |
| 130 | |
| 131 | /* |
| 132 | A = [1 2] |
| 133 | [3 4] |
| 134 | [6 -10] |
| 135 | |
| 136 | b = [ 8 |
| 137 | 18 |
| 138 | -18] |
| 139 | |
| 140 | x = [2 |
| 141 | 3] |
| 142 | |
| 143 | D = [1 |
| 144 | 2] |
| 145 | |
| 146 | x_D = [1.78448275; |
| 147 | 2.82327586;] |
| 148 | */ |
| 149 | LinearLeastSquaresProblem* LinearLeastSquaresProblem0() { |
| 150 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 151 | |
| 152 | TripletSparseMatrix* A = new TripletSparseMatrix(3, 2, 6); |
| 153 | problem->b.reset(new double[3]); |
| 154 | problem->D.reset(new double[2]); |
| 155 | |
| 156 | problem->x.reset(new double[2]); |
| 157 | problem->x_D.reset(new double[2]); |
| 158 | |
| 159 | int* Ai = A->mutable_rows(); |
| 160 | int* Aj = A->mutable_cols(); |
| 161 | double* Ax = A->mutable_values(); |
| 162 | |
| 163 | int counter = 0; |
| 164 | for (int i = 0; i < 3; ++i) { |
| 165 | for (int j = 0; j< 2; ++j) { |
| 166 | Ai[counter]=i; |
| 167 | Aj[counter]=j; |
| 168 | ++counter; |
| 169 | } |
| 170 | }; |
| 171 | |
| 172 | Ax[0] = 1.; |
| 173 | Ax[1] = 2.; |
| 174 | Ax[2] = 3.; |
| 175 | Ax[3] = 4.; |
| 176 | Ax[4] = 6; |
| 177 | Ax[5] = -10; |
| 178 | A->set_num_nonzeros(6); |
| 179 | problem->A.reset(A); |
| 180 | |
| 181 | problem->b[0] = 8; |
| 182 | problem->b[1] = 18; |
| 183 | problem->b[2] = -18; |
| 184 | |
| 185 | problem->x[0] = 2.0; |
| 186 | problem->x[1] = 3.0; |
| 187 | |
| 188 | problem->D[0] = 1; |
| 189 | problem->D[1] = 2; |
| 190 | |
| 191 | problem->x_D[0] = 1.78448275; |
| 192 | problem->x_D[1] = 2.82327586; |
| 193 | return problem; |
| 194 | } |
| 195 | |
| 196 | |
| 197 | /* |
| 198 | A = [1 0 | 2 0 0 |
| 199 | 3 0 | 0 4 0 |
| 200 | 0 5 | 0 0 6 |
| 201 | 0 7 | 8 0 0 |
| 202 | 0 9 | 1 0 0 |
| 203 | 0 0 | 1 1 1] |
| 204 | |
| 205 | b = [0 |
| 206 | 1 |
| 207 | 2 |
| 208 | 3 |
| 209 | 4 |
| 210 | 5] |
| 211 | |
| 212 | c = A'* b = [ 3 |
| 213 | 67 |
| 214 | 33 |
| 215 | 9 |
| 216 | 17] |
| 217 | |
| 218 | A'A = [10 0 2 12 0 |
| 219 | 0 155 65 0 30 |
| 220 | 2 65 70 1 1 |
| 221 | 12 0 1 17 1 |
| 222 | 0 30 1 1 37] |
| 223 | |
| 224 | S = [ 42.3419 -1.4000 -11.5806 |
| 225 | -1.4000 2.6000 1.0000 |
| 226 | 11.5806 1.0000 31.1935] |
| 227 | |
| 228 | r = [ 4.3032 |
| 229 | 5.4000 |
| 230 | 5.0323] |
| 231 | |
| 232 | S\r = [ 0.2102 |
| 233 | 2.1367 |
| 234 | 0.1388] |
| 235 | |
| 236 | A\b = [-2.3061 |
| 237 | 0.3172 |
| 238 | 0.2102 |
| 239 | 2.1367 |
| 240 | 0.1388] |
| 241 | */ |
| 242 | // The following two functions create a TripletSparseMatrix and a |
| 243 | // BlockSparseMatrix version of this problem. |
| 244 | |
| 245 | // TripletSparseMatrix version. |
| 246 | LinearLeastSquaresProblem* LinearLeastSquaresProblem1() { |
| 247 | int num_rows = 6; |
| 248 | int num_cols = 5; |
| 249 | |
| 250 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 251 | TripletSparseMatrix* A = new TripletSparseMatrix(num_rows, |
| 252 | num_cols, |
| 253 | num_rows * num_cols); |
| 254 | problem->b.reset(new double[num_rows]); |
| 255 | problem->D.reset(new double[num_cols]); |
| 256 | problem->num_eliminate_blocks = 2; |
| 257 | |
| 258 | int* rows = A->mutable_rows(); |
| 259 | int* cols = A->mutable_cols(); |
| 260 | double* values = A->mutable_values(); |
| 261 | |
| 262 | int nnz = 0; |
| 263 | |
| 264 | // Row 1 |
| 265 | { |
| 266 | rows[nnz] = 0; |
| 267 | cols[nnz] = 0; |
| 268 | values[nnz++] = 1; |
| 269 | |
| 270 | rows[nnz] = 0; |
| 271 | cols[nnz] = 2; |
| 272 | values[nnz++] = 2; |
| 273 | } |
| 274 | |
| 275 | // Row 2 |
| 276 | { |
| 277 | rows[nnz] = 1; |
| 278 | cols[nnz] = 0; |
| 279 | values[nnz++] = 3; |
| 280 | |
| 281 | rows[nnz] = 1; |
| 282 | cols[nnz] = 3; |
| 283 | values[nnz++] = 4; |
| 284 | } |
| 285 | |
| 286 | // Row 3 |
| 287 | { |
| 288 | rows[nnz] = 2; |
| 289 | cols[nnz] = 1; |
| 290 | values[nnz++] = 5; |
| 291 | |
| 292 | rows[nnz] = 2; |
| 293 | cols[nnz] = 4; |
| 294 | values[nnz++] = 6; |
| 295 | } |
| 296 | |
| 297 | // Row 4 |
| 298 | { |
| 299 | rows[nnz] = 3; |
| 300 | cols[nnz] = 1; |
| 301 | values[nnz++] = 7; |
| 302 | |
| 303 | rows[nnz] = 3; |
| 304 | cols[nnz] = 2; |
| 305 | values[nnz++] = 8; |
| 306 | } |
| 307 | |
| 308 | // Row 5 |
| 309 | { |
| 310 | rows[nnz] = 4; |
| 311 | cols[nnz] = 1; |
| 312 | values[nnz++] = 9; |
| 313 | |
| 314 | rows[nnz] = 4; |
| 315 | cols[nnz] = 2; |
| 316 | values[nnz++] = 1; |
| 317 | } |
| 318 | |
| 319 | // Row 6 |
| 320 | { |
| 321 | rows[nnz] = 5; |
| 322 | cols[nnz] = 2; |
| 323 | values[nnz++] = 1; |
| 324 | |
| 325 | rows[nnz] = 5; |
| 326 | cols[nnz] = 3; |
| 327 | values[nnz++] = 1; |
| 328 | |
| 329 | rows[nnz] = 5; |
| 330 | cols[nnz] = 4; |
| 331 | values[nnz++] = 1; |
| 332 | } |
| 333 | |
| 334 | A->set_num_nonzeros(nnz); |
| 335 | CHECK(A->IsValid()); |
| 336 | |
| 337 | problem->A.reset(A); |
| 338 | |
| 339 | for (int i = 0; i < num_cols; ++i) { |
| 340 | problem->D.get()[i] = 1; |
| 341 | } |
| 342 | |
| 343 | for (int i = 0; i < num_rows; ++i) { |
| 344 | problem->b.get()[i] = i; |
| 345 | } |
| 346 | |
| 347 | return problem; |
| 348 | } |
| 349 | |
| 350 | // BlockSparseMatrix version |
| 351 | LinearLeastSquaresProblem* LinearLeastSquaresProblem2() { |
| 352 | int num_rows = 6; |
| 353 | int num_cols = 5; |
| 354 | |
| 355 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 356 | |
| 357 | problem->b.reset(new double[num_rows]); |
| 358 | problem->D.reset(new double[num_cols]); |
| 359 | problem->num_eliminate_blocks = 2; |
| 360 | |
| 361 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| 362 | scoped_array<double> values(new double[num_rows * num_cols]); |
| 363 | |
| 364 | for (int c = 0; c < num_cols; ++c) { |
| 365 | bs->cols.push_back(Block()); |
| 366 | bs->cols.back().size = 1; |
| 367 | bs->cols.back().position = c; |
| 368 | } |
| 369 | |
| 370 | int nnz = 0; |
| 371 | |
| 372 | // Row 1 |
| 373 | { |
| 374 | values[nnz++] = 1; |
| 375 | values[nnz++] = 2; |
| 376 | |
| 377 | bs->rows.push_back(CompressedRow()); |
| 378 | CompressedRow& row = bs->rows.back(); |
| 379 | row.block.size = 1; |
| 380 | row.block.position = 0; |
| 381 | row.cells.push_back(Cell(0, 0)); |
| 382 | row.cells.push_back(Cell(2, 1)); |
| 383 | } |
| 384 | |
| 385 | // Row 2 |
| 386 | { |
| 387 | values[nnz++] = 3; |
| 388 | values[nnz++] = 4; |
| 389 | |
| 390 | bs->rows.push_back(CompressedRow()); |
| 391 | CompressedRow& row = bs->rows.back(); |
| 392 | row.block.size = 1; |
| 393 | row.block.position = 1; |
| 394 | row.cells.push_back(Cell(0, 2)); |
| 395 | row.cells.push_back(Cell(3, 3)); |
| 396 | } |
| 397 | |
| 398 | // Row 3 |
| 399 | { |
| 400 | values[nnz++] = 5; |
| 401 | values[nnz++] = 6; |
| 402 | |
| 403 | bs->rows.push_back(CompressedRow()); |
| 404 | CompressedRow& row = bs->rows.back(); |
| 405 | row.block.size = 1; |
| 406 | row.block.position = 2; |
| 407 | row.cells.push_back(Cell(1, 4)); |
| 408 | row.cells.push_back(Cell(4, 5)); |
| 409 | } |
| 410 | |
| 411 | // Row 4 |
| 412 | { |
| 413 | values[nnz++] = 7; |
| 414 | values[nnz++] = 8; |
| 415 | |
| 416 | bs->rows.push_back(CompressedRow()); |
| 417 | CompressedRow& row = bs->rows.back(); |
| 418 | row.block.size = 1; |
| 419 | row.block.position = 3; |
| 420 | row.cells.push_back(Cell(1, 6)); |
| 421 | row.cells.push_back(Cell(2, 7)); |
| 422 | } |
| 423 | |
| 424 | // Row 5 |
| 425 | { |
| 426 | values[nnz++] = 9; |
| 427 | values[nnz++] = 1; |
| 428 | |
| 429 | bs->rows.push_back(CompressedRow()); |
| 430 | CompressedRow& row = bs->rows.back(); |
| 431 | row.block.size = 1; |
| 432 | row.block.position = 4; |
| 433 | row.cells.push_back(Cell(1, 8)); |
| 434 | row.cells.push_back(Cell(2, 9)); |
| 435 | } |
| 436 | |
| 437 | // Row 6 |
| 438 | { |
| 439 | values[nnz++] = 1; |
| 440 | values[nnz++] = 1; |
| 441 | values[nnz++] = 1; |
| 442 | |
| 443 | bs->rows.push_back(CompressedRow()); |
| 444 | CompressedRow& row = bs->rows.back(); |
| 445 | row.block.size = 1; |
| 446 | row.block.position = 5; |
| 447 | row.cells.push_back(Cell(2, 10)); |
| 448 | row.cells.push_back(Cell(3, 11)); |
| 449 | row.cells.push_back(Cell(4, 12)); |
| 450 | } |
| 451 | |
| 452 | BlockSparseMatrix* A = new BlockSparseMatrix(bs); |
| 453 | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); |
| 454 | |
| 455 | for (int i = 0; i < num_cols; ++i) { |
| 456 | problem->D.get()[i] = 1; |
| 457 | } |
| 458 | |
| 459 | for (int i = 0; i < num_rows; ++i) { |
| 460 | problem->b.get()[i] = i; |
| 461 | } |
| 462 | |
| 463 | problem->A.reset(A); |
| 464 | |
| 465 | return problem; |
| 466 | } |
| 467 | |
| 468 | |
| 469 | /* |
| 470 | A = [1 0 |
| 471 | 3 0 |
| 472 | 0 5 |
| 473 | 0 7 |
| 474 | 0 9 |
| 475 | 0 0] |
| 476 | |
| 477 | b = [0 |
| 478 | 1 |
| 479 | 2 |
| 480 | 3 |
| 481 | 4 |
| 482 | 5] |
| 483 | */ |
| 484 | // BlockSparseMatrix version |
| 485 | LinearLeastSquaresProblem* LinearLeastSquaresProblem3() { |
| 486 | int num_rows = 5; |
| 487 | int num_cols = 2; |
| 488 | |
| 489 | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; |
| 490 | |
| 491 | problem->b.reset(new double[num_rows]); |
| 492 | problem->D.reset(new double[num_cols]); |
| 493 | problem->num_eliminate_blocks = 2; |
| 494 | |
| 495 | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; |
| 496 | scoped_array<double> values(new double[num_rows * num_cols]); |
| 497 | |
| 498 | for (int c = 0; c < num_cols; ++c) { |
| 499 | bs->cols.push_back(Block()); |
| 500 | bs->cols.back().size = 1; |
| 501 | bs->cols.back().position = c; |
| 502 | } |
| 503 | |
| 504 | int nnz = 0; |
| 505 | |
| 506 | // Row 1 |
| 507 | { |
| 508 | values[nnz++] = 1; |
| 509 | bs->rows.push_back(CompressedRow()); |
| 510 | CompressedRow& row = bs->rows.back(); |
| 511 | row.block.size = 1; |
| 512 | row.block.position = 0; |
| 513 | row.cells.push_back(Cell(0, 0)); |
| 514 | } |
| 515 | |
| 516 | // Row 2 |
| 517 | { |
| 518 | values[nnz++] = 3; |
| 519 | bs->rows.push_back(CompressedRow()); |
| 520 | CompressedRow& row = bs->rows.back(); |
| 521 | row.block.size = 1; |
| 522 | row.block.position = 1; |
| 523 | row.cells.push_back(Cell(0, 1)); |
| 524 | } |
| 525 | |
| 526 | // Row 3 |
| 527 | { |
| 528 | values[nnz++] = 5; |
| 529 | bs->rows.push_back(CompressedRow()); |
| 530 | CompressedRow& row = bs->rows.back(); |
| 531 | row.block.size = 1; |
| 532 | row.block.position = 2; |
| 533 | row.cells.push_back(Cell(1, 2)); |
| 534 | } |
| 535 | |
| 536 | // Row 4 |
| 537 | { |
| 538 | values[nnz++] = 7; |
| 539 | bs->rows.push_back(CompressedRow()); |
| 540 | CompressedRow& row = bs->rows.back(); |
| 541 | row.block.size = 1; |
| 542 | row.block.position = 3; |
| 543 | row.cells.push_back(Cell(1, 3)); |
| 544 | } |
| 545 | |
| 546 | // Row 5 |
| 547 | { |
| 548 | values[nnz++] = 9; |
| 549 | bs->rows.push_back(CompressedRow()); |
| 550 | CompressedRow& row = bs->rows.back(); |
| 551 | row.block.size = 1; |
| 552 | row.block.position = 4; |
| 553 | row.cells.push_back(Cell(1, 4)); |
| 554 | } |
| 555 | |
| 556 | BlockSparseMatrix* A = new BlockSparseMatrix(bs); |
| 557 | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); |
| 558 | |
| 559 | for (int i = 0; i < num_cols; ++i) { |
| 560 | problem->D.get()[i] = 1; |
| 561 | } |
| 562 | |
| 563 | for (int i = 0; i < num_rows; ++i) { |
| 564 | problem->b.get()[i] = i; |
| 565 | } |
| 566 | |
| 567 | problem->A.reset(A); |
| 568 | |
| 569 | return problem; |
| 570 | } |
| 571 | |
| 572 | } // namespace internal |
| 573 | } // namespace ceres |