|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2020 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: darius.rueckert@fau.de (Darius Rueckert) | 
|  | // | 
|  | // | 
|  | #ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ | 
|  | #define CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ | 
|  |  | 
|  | #include <Eigen/Core> | 
|  | #include <cmath> | 
|  |  | 
|  | #include "ceres/constants.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // The brdf is based on: | 
|  | // Burley, Brent, and Walt Disney Animation Studios. "Physically-based shading | 
|  | // at disney." ACM SIGGRAPH. Vol. 2012. 2012. | 
|  | // | 
|  | // The implementation is based on: | 
|  | // https://github.com/wdas/brdf/blob/master/src/brdfs/disney.brdf | 
|  | struct Brdf { | 
|  | public: | 
|  | template <typename T> | 
|  | inline bool operator()(const T* const material, | 
|  | const T* const c_ptr, | 
|  | const T* const n_ptr, | 
|  | const T* const v_ptr, | 
|  | const T* const l_ptr, | 
|  | const T* const x_ptr, | 
|  | const T* const y_ptr, | 
|  | T* residual) const { | 
|  | using Vec3 = Eigen::Matrix<T, 3, 1>; | 
|  |  | 
|  | T metallic = material[0]; | 
|  | T subsurface = material[1]; | 
|  | T specular = material[2]; | 
|  | T roughness = material[3]; | 
|  | T specular_tint = material[4]; | 
|  | T anisotropic = material[5]; | 
|  | T sheen = material[6]; | 
|  | T sheen_tint = material[7]; | 
|  | T clearcoat = material[8]; | 
|  | T clearcoat_gloss = material[9]; | 
|  |  | 
|  | Eigen::Map<const Vec3> c(c_ptr); | 
|  | Eigen::Map<const Vec3> n(n_ptr); | 
|  | Eigen::Map<const Vec3> v(v_ptr); | 
|  | Eigen::Map<const Vec3> l(l_ptr); | 
|  | Eigen::Map<const Vec3> x(x_ptr); | 
|  | Eigen::Map<const Vec3> y(y_ptr); | 
|  |  | 
|  | const T n_dot_l = n.dot(l); | 
|  | const T n_dot_v = n.dot(v); | 
|  |  | 
|  | const Vec3 l_p_v = l + v; | 
|  | const Vec3 h = l_p_v / l_p_v.norm(); | 
|  |  | 
|  | const T n_dot_h = n.dot(h); | 
|  | const T l_dot_h = l.dot(h); | 
|  |  | 
|  | const T h_dot_x = h.dot(x); | 
|  | const T h_dot_y = h.dot(y); | 
|  |  | 
|  | const T c_dlum = T(0.3) * c[0] + T(0.6) * c[1] + T(0.1) * c[2]; | 
|  |  | 
|  | const Vec3 c_tint = c / c_dlum; | 
|  |  | 
|  | const Vec3 c_spec0 = | 
|  | Lerp(specular * T(0.08) * | 
|  | Lerp(Vec3(T(1), T(1), T(1)), c_tint, specular_tint), | 
|  | c, | 
|  | metallic); | 
|  | const Vec3 c_sheen = Lerp(Vec3(T(1), T(1), T(1)), c_tint, sheen_tint); | 
|  |  | 
|  | // Diffuse fresnel - go from 1 at normal incidence to .5 at grazing | 
|  | // and mix in diffuse retro-reflection based on roughness | 
|  | const T fl = SchlickFresnel(n_dot_l); | 
|  | const T fv = SchlickFresnel(n_dot_v); | 
|  | const T fd_90 = T(0.5) + T(2) * l_dot_h * l_dot_h * roughness; | 
|  | const T fd = Lerp(T(1), fd_90, fl) * Lerp(T(1), fd_90, fv); | 
|  |  | 
|  | // Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf | 
|  | // 1.25 scale is used to (roughly) preserve albedo | 
|  | // Fss90 used to "flatten" retroreflection based on roughness | 
|  | const T fss_90 = l_dot_h * l_dot_h * roughness; | 
|  | const T fss = Lerp(T(1), fss_90, fl) * Lerp(T(1), fss_90, fv); | 
|  | const T ss = | 
|  | T(1.25) * (fss * (T(1) / (n_dot_l + n_dot_v) - T(0.5)) + T(0.5)); | 
|  |  | 
|  | // specular | 
|  | const T eps = T(0.001); | 
|  | const T aspct = Aspect(anisotropic); | 
|  | const T ax_temp = Square(roughness) / aspct; | 
|  | const T ay_temp = Square(roughness) * aspct; | 
|  | const T ax = (ax_temp < eps ? eps : ax_temp); | 
|  | const T ay = (ay_temp < eps ? eps : ay_temp); | 
|  | const T ds = GTR2Aniso(n_dot_h, h_dot_x, h_dot_y, ax, ay); | 
|  | const T fh = SchlickFresnel(l_dot_h); | 
|  | const Vec3 fs = Lerp(c_spec0, Vec3(T(1), T(1), T(1)), fh); | 
|  | const T roughg = Square(roughness * T(0.5) + T(0.5)); | 
|  | const T ggxn_dot_l = SmithG_GGX(n_dot_l, roughg); | 
|  | const T ggxn_dot_v = SmithG_GGX(n_dot_v, roughg); | 
|  | const T gs = ggxn_dot_l * ggxn_dot_v; | 
|  |  | 
|  | // sheen | 
|  | const Vec3 f_sheen = fh * sheen * c_sheen; | 
|  |  | 
|  | // clearcoat (ior = 1.5 -> F0 = 0.04) | 
|  | const T a = Lerp(T(0.1), T(0.001), clearcoat_gloss); | 
|  | const T dr = GTR1(n_dot_h, a); | 
|  | const T fr = Lerp(T(0.04), T(1), fh); | 
|  | const T cggxn_dot_l = SmithG_GGX(n_dot_l, T(0.25)); | 
|  | const T cggxn_dot_v = SmithG_GGX(n_dot_v, T(0.25)); | 
|  | const T gr = cggxn_dot_l * cggxn_dot_v; | 
|  |  | 
|  | const Vec3 result_no_cosine = | 
|  | (T(1.0 / constants::pi) * Lerp(fd, ss, subsurface) * c + f_sheen) * | 
|  | (T(1) - metallic) + | 
|  | gs * fs * ds + | 
|  | Vec3(T(0.25), T(0.25), T(0.25)) * clearcoat * gr * fr * dr; | 
|  | const Vec3 result = n_dot_l * result_no_cosine; | 
|  | residual[0] = result(0); | 
|  | residual[1] = result(1); | 
|  | residual[2] = result(2); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T SchlickFresnel(const T& u) const { | 
|  | T m = T(1) - u; | 
|  | const T m2 = m * m; | 
|  | return m2 * m2 * m;  // (1-u)^5 | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T Aspect(const T& anisotropic) const { | 
|  | return T(sqrt(T(1) - anisotropic * T(0.9))); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T SmithG_GGX(const T& n_dot_v, const T& alpha_g) const { | 
|  | const T a = alpha_g * alpha_g; | 
|  | const T b = n_dot_v * n_dot_v; | 
|  | return T(1) / (n_dot_v + T(sqrt(a + b - a * b))); | 
|  | } | 
|  |  | 
|  | // Generalized-Trowbridge-Reitz (GTR) Microfacet Distribution | 
|  | // See paper, Appendix B | 
|  | template <typename T> | 
|  | inline T GTR1(const T& n_dot_h, const T& a) const { | 
|  | T result = T(0); | 
|  |  | 
|  | if (a >= T(1)) { | 
|  | result = T(1 / constants::pi); | 
|  | } else { | 
|  | const T a2 = a * a; | 
|  | const T t = T(1) + (a2 - T(1)) * n_dot_h * n_dot_h; | 
|  | result = (a2 - T(1)) / (T(constants::pi) * T(log(a2) * t)); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T GTR2Aniso(const T& n_dot_h, | 
|  | const T& h_dot_x, | 
|  | const T& h_dot_y, | 
|  | const T& ax, | 
|  | const T& ay) const { | 
|  | return T(1) / (T(constants::pi) * ax * ay * | 
|  | Square(Square(h_dot_x / ax) + Square(h_dot_y / ay) + | 
|  | n_dot_h * n_dot_h)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T Lerp(const T& a, const T& b, const T& u) const { | 
|  | return a + u * (b - a); | 
|  | } | 
|  |  | 
|  | template <typename Derived1, typename Derived2> | 
|  | inline typename Derived1::PlainObject Lerp( | 
|  | const Eigen::MatrixBase<Derived1>& a, | 
|  | const Eigen::MatrixBase<Derived2>& b, | 
|  | typename Derived1::Scalar alpha) const { | 
|  | return (typename Derived1::Scalar(1) - alpha) * a + alpha * b; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline T Square(const T& x) const { | 
|  | return x * x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ |