|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  |  | 
|  | #include "ceres/solver_impl.h" | 
|  |  | 
|  | #include <iostream>  // NOLINT | 
|  | #include <numeric> | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/gradient_checking_cost_function.h" | 
|  | #include "ceres/iteration_callback.h" | 
|  | #include "ceres/levenberg_marquardt_strategy.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/map_util.h" | 
|  | #include "ceres/minimizer.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/problem.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/residual_block.h" | 
|  | #include "ceres/schur_ordering.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/trust_region_minimizer.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | void EvaluateCostAndResiduals(ProblemImpl* problem_impl, | 
|  | double* cost, | 
|  | vector<double>* residuals) { | 
|  | CHECK_NOTNULL(cost); | 
|  | Program* program = CHECK_NOTNULL(problem_impl)->mutable_program(); | 
|  | if (residuals != NULL) { | 
|  | residuals->resize(program->NumResiduals()); | 
|  | program->Evaluate(cost, &(*residuals)[0]); | 
|  | } else { | 
|  | program->Evaluate(cost, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Callback for updating the user's parameter blocks. Updates are only | 
|  | // done if the step is successful. | 
|  | class StateUpdatingCallback : public IterationCallback { | 
|  | public: | 
|  | StateUpdatingCallback(Program* program, double* parameters) | 
|  | : program_(program), parameters_(parameters) {} | 
|  |  | 
|  | CallbackReturnType operator()(const IterationSummary& summary) { | 
|  | if (summary.step_is_successful) { | 
|  | program_->StateVectorToParameterBlocks(parameters_); | 
|  | program_->CopyParameterBlockStateToUserState(); | 
|  | } | 
|  | return SOLVER_CONTINUE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Program* program_; | 
|  | double* parameters_; | 
|  | }; | 
|  |  | 
|  | // Callback for logging the state of the minimizer to STDERR or STDOUT | 
|  | // depending on the user's preferences and logging level. | 
|  | class LoggingCallback : public IterationCallback { | 
|  | public: | 
|  | explicit LoggingCallback(bool log_to_stdout) | 
|  | : log_to_stdout_(log_to_stdout) {} | 
|  |  | 
|  | ~LoggingCallback() {} | 
|  |  | 
|  | CallbackReturnType operator()(const IterationSummary& summary) { | 
|  | const char* kReportRowFormat = | 
|  | "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " | 
|  | "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e"; | 
|  | string output = StringPrintf(kReportRowFormat, | 
|  | summary.iteration, | 
|  | summary.cost, | 
|  | summary.cost_change, | 
|  | summary.gradient_max_norm, | 
|  | summary.step_norm, | 
|  | summary.relative_decrease, | 
|  | summary.trust_region_radius, | 
|  | summary.linear_solver_iterations, | 
|  | summary.iteration_time_in_seconds, | 
|  | summary.cumulative_time_in_seconds); | 
|  | if (log_to_stdout_) { | 
|  | cout << output << endl; | 
|  | } else { | 
|  | VLOG(1) << output; | 
|  | } | 
|  | return SOLVER_CONTINUE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const bool log_to_stdout_; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void SolverImpl::Minimize(const Solver::Options& options, | 
|  | Program* program, | 
|  | Evaluator* evaluator, | 
|  | LinearSolver* linear_solver, | 
|  | double* parameters, | 
|  | Solver::Summary* summary) { | 
|  | Minimizer::Options minimizer_options(options); | 
|  | LoggingCallback logging_callback(options.minimizer_progress_to_stdout); | 
|  | if (options.logging_type != SILENT) { | 
|  | minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
|  | &logging_callback); | 
|  | } | 
|  |  | 
|  | StateUpdatingCallback updating_callback(program, parameters); | 
|  | if (options.update_state_every_iteration) { | 
|  | // This must get pushed to the front of the callbacks so that it is run | 
|  | // before any of the user callbacks. | 
|  | minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
|  | &updating_callback); | 
|  | } | 
|  |  | 
|  | minimizer_options.evaluator = evaluator; | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | minimizer_options.jacobian = jacobian.get(); | 
|  |  | 
|  | TrustRegionStrategy::Options trust_region_strategy_options; | 
|  | trust_region_strategy_options.linear_solver = linear_solver; | 
|  | trust_region_strategy_options.initial_radius = | 
|  | options.initial_trust_region_radius; | 
|  | trust_region_strategy_options.max_radius = options.max_trust_region_radius; | 
|  | trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal; | 
|  | trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal; | 
|  | trust_region_strategy_options.trust_region_strategy_type = | 
|  | options.trust_region_strategy_type; | 
|  | scoped_ptr<TrustRegionStrategy> strategy( | 
|  | TrustRegionStrategy::Create(trust_region_strategy_options)); | 
|  | minimizer_options.trust_region_strategy = strategy.get(); | 
|  |  | 
|  | TrustRegionMinimizer minimizer; | 
|  | time_t minimizer_start_time = time(NULL); | 
|  | minimizer.Minimize(minimizer_options, parameters, summary); | 
|  | summary->minimizer_time_in_seconds = time(NULL) - minimizer_start_time; | 
|  | } | 
|  |  | 
|  | void SolverImpl::Solve(const Solver::Options& original_options, | 
|  | ProblemImpl* problem_impl, | 
|  | Solver::Summary* summary) { | 
|  | time_t solver_start_time = time(NULL); | 
|  | Solver::Options options(original_options); | 
|  |  | 
|  | #ifndef CERES_USE_OPENMP | 
|  | if (options.num_threads > 1) { | 
|  | LOG(WARNING) | 
|  | << "OpenMP support is not compiled into this binary; " | 
|  | << "only options.num_threads=1 is supported. Switching" | 
|  | << "to single threaded mode."; | 
|  | options.num_threads = 1; | 
|  | } | 
|  | if (options.num_linear_solver_threads > 1) { | 
|  | LOG(WARNING) | 
|  | << "OpenMP support is not compiled into this binary; " | 
|  | << "only options.num_linear_solver_threads=1 is supported. Switching" | 
|  | << "to single threaded mode."; | 
|  | options.num_linear_solver_threads = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Reset the summary object to its default values; | 
|  | *CHECK_NOTNULL(summary) = Solver::Summary(); | 
|  | summary->linear_solver_type_given = options.linear_solver_type; | 
|  | summary->num_eliminate_blocks_given = original_options.num_eliminate_blocks; | 
|  | summary->num_threads_given = original_options.num_threads; | 
|  | summary->num_linear_solver_threads_given = | 
|  | original_options.num_linear_solver_threads; | 
|  | summary->ordering_type = original_options.ordering_type; | 
|  |  | 
|  | summary->num_parameter_blocks = problem_impl->NumParameterBlocks(); | 
|  | summary->num_parameters = problem_impl->NumParameters(); | 
|  | summary->num_residual_blocks = problem_impl->NumResidualBlocks(); | 
|  | summary->num_residuals = problem_impl->NumResiduals(); | 
|  |  | 
|  | summary->num_threads_used = options.num_threads; | 
|  | summary->sparse_linear_algebra_library = | 
|  | options.sparse_linear_algebra_library; | 
|  | summary->trust_region_strategy_type = options.trust_region_strategy_type; | 
|  |  | 
|  | // Evaluate the initial cost and residual vector (if needed). The | 
|  | // initial cost needs to be computed on the original unpreprocessed | 
|  | // problem, as it is used to determine the value of the "fixed" part | 
|  | // of the objective function after the problem has undergone | 
|  | // reduction. Also the initial residuals are in the order in which | 
|  | // the user added the ResidualBlocks to the optimization problem. | 
|  | // | 
|  | // Note: This assumes the parameter block states are pointing to the | 
|  | // user state at start of Solve(), instead of some other pointer. | 
|  | // The invariant is ensured by the ParameterBlock constructor and by | 
|  | // the call to SetParameterBlockStatePtrsToUserStatePtrs() at the | 
|  | // bottom of this function. | 
|  | EvaluateCostAndResiduals(problem_impl, | 
|  | &summary->initial_cost, | 
|  | options.return_initial_residuals | 
|  | ? &summary->initial_residuals | 
|  | : NULL); | 
|  |  | 
|  | // If the user requests gradient checking, construct a new | 
|  | // ProblemImpl by wrapping the CostFunctions of problem_impl inside | 
|  | // GradientCheckingCostFunction and replacing problem_impl with | 
|  | // gradient_checking_problem_impl. | 
|  | scoped_ptr<ProblemImpl> gradient_checking_problem_impl; | 
|  | // Save the original problem impl so we don't use the gradient | 
|  | // checking one when computing the residuals. | 
|  | ProblemImpl* original_problem_impl = problem_impl; | 
|  | if (options.check_gradients) { | 
|  | VLOG(1) << "Checking Gradients"; | 
|  | gradient_checking_problem_impl.reset( | 
|  | CreateGradientCheckingProblemImpl( | 
|  | problem_impl, | 
|  | options.numeric_derivative_relative_step_size, | 
|  | options.gradient_check_relative_precision)); | 
|  |  | 
|  | // From here on, problem_impl will point to the GradientChecking version. | 
|  | problem_impl = gradient_checking_problem_impl.get(); | 
|  | } | 
|  |  | 
|  | // Create the three objects needed to minimize: the transformed program, the | 
|  | // evaluator, and the linear solver. | 
|  |  | 
|  | scoped_ptr<Program> reduced_program( | 
|  | CreateReducedProgram(&options, problem_impl, &summary->error)); | 
|  | if (reduced_program == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks(); | 
|  | summary->num_parameters_reduced = reduced_program->NumParameters(); | 
|  | summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks(); | 
|  | summary->num_residuals_reduced = reduced_program->NumResiduals(); | 
|  |  | 
|  | scoped_ptr<LinearSolver> | 
|  | linear_solver(CreateLinearSolver(&options, &summary->error)); | 
|  | summary->linear_solver_type_used = options.linear_solver_type; | 
|  | summary->preconditioner_type = options.preconditioner_type; | 
|  | summary->num_eliminate_blocks_used = options.num_eliminate_blocks; | 
|  | summary->num_linear_solver_threads_used = options.num_linear_solver_threads; | 
|  |  | 
|  | if (linear_solver == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!MaybeReorderResidualBlocks(options, | 
|  | reduced_program.get(), | 
|  | &summary->error)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator( | 
|  | CreateEvaluator(options, reduced_program.get(), &summary->error)); | 
|  | if (evaluator == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The optimizer works on contiguous parameter vectors; allocate some. | 
|  | Vector parameters(reduced_program->NumParameters()); | 
|  |  | 
|  | // Collect the discontiguous parameters into a contiguous state vector. | 
|  | reduced_program->ParameterBlocksToStateVector(parameters.data()); | 
|  |  | 
|  | time_t minimizer_start_time = time(NULL); | 
|  | summary->preprocessor_time_in_seconds = | 
|  | minimizer_start_time - solver_start_time; | 
|  |  | 
|  | // Run the optimization. | 
|  | Minimize(options, | 
|  | reduced_program.get(), | 
|  | evaluator.get(), | 
|  | linear_solver.get(), | 
|  | parameters.data(), | 
|  | summary); | 
|  |  | 
|  | // If the user aborted mid-optimization or the optimization | 
|  | // terminated because of a numerical failure, then return without | 
|  | // updating user state. | 
|  | if (summary->termination_type == USER_ABORT || | 
|  | summary->termination_type == NUMERICAL_FAILURE) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | time_t post_process_start_time = time(NULL); | 
|  | // Push the contiguous optimized parameters back to the user's parameters. | 
|  | reduced_program->StateVectorToParameterBlocks(parameters.data()); | 
|  | reduced_program->CopyParameterBlockStateToUserState(); | 
|  |  | 
|  | // Ensure the program state is set to the user parameters on the way out. | 
|  | reduced_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
|  |  | 
|  | // Return the final cost and residuals for the original problem. | 
|  | EvaluateCostAndResiduals(original_problem_impl, | 
|  | &summary->final_cost, | 
|  | options.return_final_residuals | 
|  | ? &summary->final_residuals | 
|  | : NULL); | 
|  |  | 
|  | // Stick a fork in it, we're done. | 
|  | time_t post_process_end_time = time(NULL); | 
|  | summary->postprocessor_time_in_seconds = | 
|  | post_process_end_time - post_process_start_time; | 
|  | } | 
|  |  | 
|  | // Strips varying parameters and residuals, maintaining order, and updating | 
|  | // num_eliminate_blocks. | 
|  | bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program, | 
|  | int* num_eliminate_blocks, | 
|  | string* error) { | 
|  | int original_num_eliminate_blocks = *num_eliminate_blocks; | 
|  | vector<ParameterBlock*>* parameter_blocks = | 
|  | program->mutable_parameter_blocks(); | 
|  |  | 
|  | // Mark all the parameters as unused. Abuse the index member of the parameter | 
|  | // blocks for the marking. | 
|  | for (int i = 0; i < parameter_blocks->size(); ++i) { | 
|  | (*parameter_blocks)[i]->set_index(-1); | 
|  | } | 
|  |  | 
|  | // Filter out residual that have all-constant parameters, and mark all the | 
|  | // parameter blocks that appear in residuals. | 
|  | { | 
|  | vector<ResidualBlock*>* residual_blocks = | 
|  | program->mutable_residual_blocks(); | 
|  | int j = 0; | 
|  | for (int i = 0; i < residual_blocks->size(); ++i) { | 
|  | ResidualBlock* residual_block = (*residual_blocks)[i]; | 
|  | int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
|  |  | 
|  | // Determine if the residual block is fixed, and also mark varying | 
|  | // parameters that appear in the residual block. | 
|  | bool all_constant = true; | 
|  | for (int k = 0; k < num_parameter_blocks; k++) { | 
|  | ParameterBlock* parameter_block = residual_block->parameter_blocks()[k]; | 
|  | if (!parameter_block->IsConstant()) { | 
|  | all_constant = false; | 
|  | parameter_block->set_index(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!all_constant) { | 
|  | (*residual_blocks)[j++] = (*residual_blocks)[i]; | 
|  | } | 
|  | } | 
|  | residual_blocks->resize(j); | 
|  | } | 
|  |  | 
|  | // Filter out unused or fixed parameter blocks, and update | 
|  | // num_eliminate_blocks as necessary. | 
|  | { | 
|  | vector<ParameterBlock*>* parameter_blocks = | 
|  | program->mutable_parameter_blocks(); | 
|  | int j = 0; | 
|  | for (int i = 0; i < parameter_blocks->size(); ++i) { | 
|  | ParameterBlock* parameter_block = (*parameter_blocks)[i]; | 
|  | if (parameter_block->index() == 1) { | 
|  | (*parameter_blocks)[j++] = parameter_block; | 
|  | } else if (i < original_num_eliminate_blocks) { | 
|  | (*num_eliminate_blocks)--; | 
|  | } | 
|  | } | 
|  | parameter_blocks->resize(j); | 
|  | } | 
|  |  | 
|  | CHECK(((program->NumResidualBlocks() == 0) && | 
|  | (program->NumParameterBlocks() == 0)) || | 
|  | ((program->NumResidualBlocks() != 0) && | 
|  | (program->NumParameterBlocks() != 0))) | 
|  | << "Congratulations, you found a bug in Ceres. Please report it."; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Program* SolverImpl::CreateReducedProgram(Solver::Options* options, | 
|  | ProblemImpl* problem_impl, | 
|  | string* error) { | 
|  | Program* original_program = problem_impl->mutable_program(); | 
|  | scoped_ptr<Program> transformed_program(new Program(*original_program)); | 
|  |  | 
|  | if (options->ordering_type == USER && | 
|  | !ApplyUserOrdering(*problem_impl, | 
|  | options->ordering, | 
|  | transformed_program.get(), | 
|  | error)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (options->ordering_type == SCHUR && options->num_eliminate_blocks != 0) { | 
|  | *error = "Can't specify SCHUR ordering and num_eliminate_blocks " | 
|  | "at the same time; SCHUR ordering determines " | 
|  | "num_eliminate_blocks automatically."; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (options->ordering_type == SCHUR && options->ordering.size() != 0) { | 
|  | *error = "Can't specify SCHUR ordering type and the ordering " | 
|  | "vector at the same time; SCHUR ordering determines " | 
|  | "a suitable parameter ordering automatically."; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int num_eliminate_blocks = options->num_eliminate_blocks; | 
|  |  | 
|  | if (!RemoveFixedBlocksFromProgram(transformed_program.get(), | 
|  | &num_eliminate_blocks, | 
|  | error)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (transformed_program->NumParameterBlocks() == 0) { | 
|  | LOG(WARNING) << "No varying parameter blocks to optimize; " | 
|  | << "bailing early."; | 
|  | return transformed_program.release(); | 
|  | } | 
|  |  | 
|  | if (options->ordering_type == SCHUR) { | 
|  | vector<ParameterBlock*> schur_ordering; | 
|  | num_eliminate_blocks = ComputeSchurOrdering(*transformed_program, | 
|  | &schur_ordering); | 
|  | CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks()) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Replace the transformed program's ordering with the schur ordering. | 
|  | swap(*transformed_program->mutable_parameter_blocks(), schur_ordering); | 
|  | } | 
|  | options->num_eliminate_blocks = num_eliminate_blocks; | 
|  | CHECK_GE(options->num_eliminate_blocks, 0) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Since the transformed program is the "active" program, and it is mutated, | 
|  | // update the parameter offsets and indices. | 
|  | transformed_program->SetParameterOffsetsAndIndex(); | 
|  | return transformed_program.release(); | 
|  | } | 
|  |  | 
|  | LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options, | 
|  | string* error) { | 
|  | if (options->trust_region_strategy_type == DOGLEG) { | 
|  | if (options->linear_solver_type == ITERATIVE_SCHUR || | 
|  | options->linear_solver_type == CGNR) { | 
|  | *error = "DOGLEG only supports exact factorization based linear " | 
|  | "solvers. If you want to use an iterative solver please " | 
|  | "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CERES_NO_SUITESPARSE | 
|  | if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
|  | options->sparse_linear_algebra_library == SUITE_SPARSE) { | 
|  | *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " | 
|  | "SuiteSparse was not enabled when Ceres was built."; | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CERES_NO_CXSPARSE | 
|  | if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
|  | options->sparse_linear_algebra_library == CX_SPARSE) { | 
|  | *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because " | 
|  | "CXSparse was not enabled when Ceres was built."; | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | if (options->linear_solver_max_num_iterations <= 0) { | 
|  | *error = "Solver::Options::linear_solver_max_num_iterations is 0."; | 
|  | return NULL; | 
|  | } | 
|  | if (options->linear_solver_min_num_iterations <= 0) { | 
|  | *error = "Solver::Options::linear_solver_min_num_iterations is 0."; | 
|  | return NULL; | 
|  | } | 
|  | if (options->linear_solver_min_num_iterations > | 
|  | options->linear_solver_max_num_iterations) { | 
|  | *error = "Solver::Options::linear_solver_min_num_iterations > " | 
|  | "Solver::Options::linear_solver_max_num_iterations."; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | LinearSolver::Options linear_solver_options; | 
|  | linear_solver_options.min_num_iterations = | 
|  | options->linear_solver_min_num_iterations; | 
|  | linear_solver_options.max_num_iterations = | 
|  | options->linear_solver_max_num_iterations; | 
|  | linear_solver_options.type = options->linear_solver_type; | 
|  | linear_solver_options.preconditioner_type = options->preconditioner_type; | 
|  | linear_solver_options.sparse_linear_algebra_library = | 
|  | options->sparse_linear_algebra_library; | 
|  | linear_solver_options.use_block_amd = options->use_block_amd; | 
|  |  | 
|  | #ifdef CERES_NO_SUITESPARSE | 
|  | if (linear_solver_options.preconditioner_type == SCHUR_JACOBI) { | 
|  | *error =  "SCHUR_JACOBI preconditioner not suppored. Please build Ceres " | 
|  | "with SuiteSparse support."; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (linear_solver_options.preconditioner_type == CLUSTER_JACOBI) { | 
|  | *error =  "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres " | 
|  | "with SuiteSparse support."; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (linear_solver_options.preconditioner_type == CLUSTER_TRIDIAGONAL) { | 
|  | *error =  "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build " | 
|  | "Ceres with SuiteSparse support."; | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | linear_solver_options.num_threads = options->num_linear_solver_threads; | 
|  | linear_solver_options.num_eliminate_blocks = | 
|  | options->num_eliminate_blocks; | 
|  |  | 
|  | if ((linear_solver_options.num_eliminate_blocks == 0) && | 
|  | IsSchurType(linear_solver_options.type)) { | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | LOG(INFO) << "No elimination block remaining switching to DENSE_QR."; | 
|  | linear_solver_options.type = DENSE_QR; | 
|  | #else | 
|  | LOG(INFO) << "No elimination block remaining " | 
|  | << "switching to SPARSE_NORMAL_CHOLESKY."; | 
|  | linear_solver_options.type = SPARSE_NORMAL_CHOLESKY; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | if (linear_solver_options.type == SPARSE_SCHUR) { | 
|  | *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor" | 
|  | "CXSparse was enabled when Ceres was compiled."; | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // The matrix used for storing the dense Schur complement has a | 
|  | // single lock guarding the whole matrix. Running the | 
|  | // SchurComplementSolver with multiple threads leads to maximum | 
|  | // contention and slowdown. If the problem is large enough to | 
|  | // benefit from a multithreaded schur eliminator, you should be | 
|  | // using a SPARSE_SCHUR solver anyways. | 
|  | if ((linear_solver_options.num_threads > 1) && | 
|  | (linear_solver_options.type == DENSE_SCHUR)) { | 
|  | LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = " | 
|  | << options->num_linear_solver_threads | 
|  | << " with DENSE_SCHUR will result in poor performance; " | 
|  | << "switching to single-threaded."; | 
|  | linear_solver_options.num_threads = 1; | 
|  | } | 
|  |  | 
|  | options->linear_solver_type = linear_solver_options.type; | 
|  | options->num_linear_solver_threads = linear_solver_options.num_threads; | 
|  |  | 
|  | return LinearSolver::Create(linear_solver_options); | 
|  | } | 
|  |  | 
|  | bool SolverImpl::ApplyUserOrdering(const ProblemImpl& problem_impl, | 
|  | vector<double*>& ordering, | 
|  | Program* program, | 
|  | string* error) { | 
|  | if (ordering.size() != program->NumParameterBlocks()) { | 
|  | *error = StringPrintf("User specified ordering does not have the same " | 
|  | "number of parameters as the problem. The problem" | 
|  | "has %d blocks while the ordering has %ld blocks.", | 
|  | program->NumParameterBlocks(), | 
|  | ordering.size()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Ensure that there are no duplicates in the user's ordering. | 
|  | { | 
|  | vector<double*> ordering_copy(ordering); | 
|  | sort(ordering_copy.begin(), ordering_copy.end()); | 
|  | if (unique(ordering_copy.begin(), ordering_copy.end()) | 
|  | != ordering_copy.end()) { | 
|  | *error = "User specified ordering contains duplicates."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | vector<ParameterBlock*>* parameter_blocks = | 
|  | program->mutable_parameter_blocks(); | 
|  |  | 
|  | fill(parameter_blocks->begin(), | 
|  | parameter_blocks->end(), | 
|  | static_cast<ParameterBlock*>(NULL)); | 
|  |  | 
|  | const ProblemImpl::ParameterMap& parameter_map = problem_impl.parameter_map(); | 
|  | for (int i = 0; i < ordering.size(); ++i) { | 
|  | ProblemImpl::ParameterMap::const_iterator it = | 
|  | parameter_map.find(ordering[i]); | 
|  | if (it == parameter_map.end()) { | 
|  | *error = StringPrintf("User specified ordering contains a pointer " | 
|  | "to a double that is not a parameter block in the " | 
|  | "problem. The invalid double is at position %d " | 
|  | " in options.ordering.", i); | 
|  | return false; | 
|  | } | 
|  | (*parameter_blocks)[i] = it->second; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Find the minimum index of any parameter block to the given residual. | 
|  | // Parameter blocks that have indices greater than num_eliminate_blocks are | 
|  | // considered to have an index equal to num_eliminate_blocks. | 
|  | int MinParameterBlock(const ResidualBlock* residual_block, | 
|  | int num_eliminate_blocks) { | 
|  | int min_parameter_block_position = num_eliminate_blocks; | 
|  | for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { | 
|  | ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; | 
|  | if (!parameter_block->IsConstant()) { | 
|  | CHECK_NE(parameter_block->index(), -1) | 
|  | << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " | 
|  | << "This is a Ceres bug; please contact the developers!"; | 
|  | min_parameter_block_position = std::min(parameter_block->index(), | 
|  | min_parameter_block_position); | 
|  | } | 
|  | } | 
|  | return min_parameter_block_position; | 
|  | } | 
|  |  | 
|  | // Reorder the residuals for program, if necessary, so that the residuals | 
|  | // involving each E block occur together. This is a necessary condition for the | 
|  | // Schur eliminator, which works on these "row blocks" in the jacobian. | 
|  | bool SolverImpl::MaybeReorderResidualBlocks(const Solver::Options& options, | 
|  | Program* program, | 
|  | string* error) { | 
|  | // Only Schur types require the lexicographic reordering. | 
|  | if (!IsSchurType(options.linear_solver_type)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CHECK_NE(0, options.num_eliminate_blocks) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Create a histogram of the number of residuals for each E block. There is an | 
|  | // extra bucket at the end to catch all non-eliminated F blocks. | 
|  | vector<int> residual_blocks_per_e_block(options.num_eliminate_blocks + 1); | 
|  | vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); | 
|  | vector<int> min_position_per_residual(residual_blocks->size()); | 
|  | for (int i = 0; i < residual_blocks->size(); ++i) { | 
|  | ResidualBlock* residual_block = (*residual_blocks)[i]; | 
|  | int position = MinParameterBlock(residual_block, | 
|  | options.num_eliminate_blocks); | 
|  | min_position_per_residual[i] = position; | 
|  | DCHECK_LE(position, options.num_eliminate_blocks); | 
|  | residual_blocks_per_e_block[position]++; | 
|  | } | 
|  |  | 
|  | // Run a cumulative sum on the histogram, to obtain offsets to the start of | 
|  | // each histogram bucket (where each bucket is for the residuals for that | 
|  | // E-block). | 
|  | vector<int> offsets(options.num_eliminate_blocks + 1); | 
|  | std::partial_sum(residual_blocks_per_e_block.begin(), | 
|  | residual_blocks_per_e_block.end(), | 
|  | offsets.begin()); | 
|  | CHECK_EQ(offsets.back(), residual_blocks->size()) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | CHECK(find(residual_blocks_per_e_block.begin(), | 
|  | residual_blocks_per_e_block.end() - 1, 0) != | 
|  | residual_blocks_per_e_block.end()) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | // Fill in each bucket with the residual blocks for its corresponding E block. | 
|  | // Each bucket is individually filled from the back of the bucket to the front | 
|  | // of the bucket. The filling order among the buckets is dictated by the | 
|  | // residual blocks. This loop uses the offsets as counters; subtracting one | 
|  | // from each offset as a residual block is placed in the bucket. When the | 
|  | // filling is finished, the offset pointerts should have shifted down one | 
|  | // entry (this is verified below). | 
|  | vector<ResidualBlock*> reordered_residual_blocks( | 
|  | (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL)); | 
|  | for (int i = 0; i < residual_blocks->size(); ++i) { | 
|  | int bucket = min_position_per_residual[i]; | 
|  |  | 
|  | // Decrement the cursor, which should now point at the next empty position. | 
|  | offsets[bucket]--; | 
|  |  | 
|  | // Sanity. | 
|  | CHECK(reordered_residual_blocks[offsets[bucket]] == NULL) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  |  | 
|  | reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; | 
|  | } | 
|  |  | 
|  | // Sanity check #1: The difference in bucket offsets should match the | 
|  | // histogram sizes. | 
|  | for (int i = 0; i < options.num_eliminate_blocks; ++i) { | 
|  | CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  | } | 
|  | // Sanity check #2: No NULL's left behind. | 
|  | for (int i = 0; i < reordered_residual_blocks.size(); ++i) { | 
|  | CHECK(reordered_residual_blocks[i] != NULL) | 
|  | << "Congratulations, you found a Ceres bug! Please report this error " | 
|  | << "to the developers."; | 
|  | } | 
|  |  | 
|  | // Now that the residuals are collected by E block, swap them in place. | 
|  | swap(*program->mutable_residual_blocks(), reordered_residual_blocks); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options, | 
|  | Program* program, | 
|  | string* error) { | 
|  | Evaluator::Options evaluator_options; | 
|  | evaluator_options.linear_solver_type = options.linear_solver_type; | 
|  | evaluator_options.num_eliminate_blocks = options.num_eliminate_blocks; | 
|  | evaluator_options.num_threads = options.num_threads; | 
|  | return Evaluator::Create(evaluator_options, program, error); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |