|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2013 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // A wrapper class that takes a variadic functor evaluating a | 
|  | // function, numerically differentiates it and makes it available as a | 
|  | // templated functor so that it can be easily used as part of Ceres' | 
|  | // automatic differentiation framework. | 
|  | // | 
|  | // For example: | 
|  | // | 
|  | // For example, let us assume that | 
|  | // | 
|  | //  struct IntrinsicProjection | 
|  | //    IntrinsicProjection(const double* observations); | 
|  | //    bool operator()(const double* calibration, | 
|  | //                    const double* point, | 
|  | //                    double* residuals); | 
|  | //  }; | 
|  | // | 
|  | // is a functor that implements the projection of a point in its local | 
|  | // coordinate system onto its image plane and subtracts it from the | 
|  | // observed point projection. | 
|  | // | 
|  | // Now we would like to compose the action of this functor with the | 
|  | // action of camera extrinsics, i.e., rotation and translation, which | 
|  | // is given by the following templated function | 
|  | // | 
|  | //   template<typename T> | 
|  | //   void RotateAndTranslatePoint(const T* rotation, | 
|  | //                                const T* translation, | 
|  | //                                const T* point, | 
|  | //                                T* result); | 
|  | // | 
|  | // To compose the extrinsics and intrinsics, we can construct a | 
|  | // CameraProjection functor as follows. | 
|  | // | 
|  | // struct CameraProjection { | 
|  | //    typedef NumericDiffFunctor<IntrinsicProjection, CENTRAL, 2, 5, 3> | 
|  | //       IntrinsicProjectionFunctor; | 
|  | // | 
|  | //   CameraProjection(double* observation) { | 
|  | //     intrinsic_projection_.reset( | 
|  | //         new IntrinsicProjectionFunctor(observation)) { | 
|  | //   } | 
|  | // | 
|  | //   template <typename T> | 
|  | //   bool operator()(const T* rotation, | 
|  | //                   const T* translation, | 
|  | //                   const T* intrinsics, | 
|  | //                   const T* point, | 
|  | //                   T* residuals) const { | 
|  | //     T transformed_point[3]; | 
|  | //     RotateAndTranslatePoint(rotation, translation, point, transformed_point); | 
|  | //     return (*intrinsic_projection_)(intrinsics, transformed_point, residual); | 
|  | //   } | 
|  | // | 
|  | //  private: | 
|  | //   scoped_ptr<IntrinsicProjectionFunctor> intrinsic_projection_; | 
|  | // }; | 
|  | // | 
|  | // Here, we made the choice of using CENTRAL differences to compute | 
|  | // the jacobian of IntrinsicProjection. | 
|  | // | 
|  | // Now, we are ready to construct an automatically differentiated cost | 
|  | // function as | 
|  | // | 
|  | // CostFunction* cost_function = | 
|  | //    new AutoDiffCostFunction<CameraProjection, 2, 3, 3, 5>( | 
|  | //        new CameraProjection(observations)); | 
|  | // | 
|  | // cost_function now seamlessly integrates automatic differentiation | 
|  | // of RotateAndTranslatePoint with a numerically differentiated | 
|  | // version of IntrinsicProjection. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_NUMERIC_DIFF_FUNCTOR_H_ | 
|  | #define CERES_PUBLIC_NUMERIC_DIFF_FUNCTOR_H_ | 
|  |  | 
|  | #include "ceres/numeric_diff_cost_function.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/cost_function_to_functor.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | template<typename Functor, | 
|  | NumericDiffMethod kMethod = CENTRAL, | 
|  | int kNumResiduals = 0, | 
|  | int N0 = 0, int N1 = 0 , int N2 = 0, int N3 = 0, int N4 = 0, | 
|  | int N5 = 0, int N6 = 0 , int N7 = 0, int N8 = 0, int N9 = 0> | 
|  | class NumericDiffFunctor { | 
|  | public: | 
|  | // relative_step_size controls the step size used by the numeric | 
|  | // differentiation process. | 
|  | explicit NumericDiffFunctor(double relative_step_size = 1e-6) | 
|  | : functor_( | 
|  | new NumericDiffCostFunction<Functor, | 
|  | kMethod, | 
|  | kNumResiduals, | 
|  | N0, N1, N2, N3, N4, | 
|  | N5, N6, N7, N8, N9>(new Functor, | 
|  | TAKE_OWNERSHIP, | 
|  | kNumResiduals, | 
|  | relative_step_size)) { | 
|  | } | 
|  |  | 
|  | NumericDiffFunctor(Functor* functor, double relative_step_size = 1e-6) | 
|  | : functor_(new NumericDiffCostFunction<Functor, | 
|  | kMethod, | 
|  | kNumResiduals, | 
|  | N0, N1, N2, N3, N4, | 
|  | N5, N6, N7, N8, N9>( | 
|  | functor, | 
|  | TAKE_OWNERSHIP, | 
|  | kNumResiduals, | 
|  | relative_step_size)) { | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, double* residuals) const { | 
|  | return functor_(x0, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | const double* x7, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, x7, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | const double* x7, | 
|  | const double* x8, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, x7, x8, residuals); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | const double* x7, | 
|  | const double* x8, | 
|  | const double* x9, | 
|  | double* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, T* residuals) const { | 
|  | return functor_(x0, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | const T* x4, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | const T* x4, | 
|  | const T* x5, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | const T* x4, | 
|  | const T* x5, | 
|  | const T* x6, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | const T* x4, | 
|  | const T* x5, | 
|  | const T* x6, | 
|  | const T* x7, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, x7, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | const T* x4, | 
|  | const T* x5, | 
|  | const T* x6, | 
|  | const T* x7, | 
|  | const T* x8, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, x7, x8, residuals); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool operator()(const T* x0, | 
|  | const T* x1, | 
|  | const T* x2, | 
|  | const T* x3, | 
|  | const T* x4, | 
|  | const T* x5, | 
|  | const T* x6, | 
|  | const T* x7, | 
|  | const T* x8, | 
|  | const T* x9, | 
|  | T* residuals) const { | 
|  | return functor_(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, residuals); | 
|  | } | 
|  |  | 
|  |  | 
|  | private: | 
|  | CostFunctionToFunctor<kNumResiduals, | 
|  | N0, N1, N2, N3, N4, | 
|  | N5, N6, N7, N8, N9> functor_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_NUMERIC_DIFF_FUNCTOR_H_ |